• Skip to main content
  • Select language
  • Skip to search
MDN Web Docs
  • Technologies
    • HTML
    • CSS
    • JavaScript
    • Graphics
    • HTTP
    • APIs / DOM
    • WebExtensions
    • MathML
  • References & Guides
    • Learn web development
    • Tutorials
    • References
    • Developer Guides
    • Accessibility
    • Game development
    • ...more docs
Add-ons
  1. MDN
  2. Mozilla
  3. Add-ons
  4. Performance best practices in extensions

Performance best practices in extensions

In This Article
  1. Improving startup performance
    1. Load only what you need, when you need it
    2. Use JavaScript code modules
    3. Defer everything that you can
  2. General Performance Tips
    1. Avoid Creating Memory Leaks
    2. Avoid Writing Slow CSS
    3. Avoid DOM mutation event listeners
    4. Lazily load services
    5. Use asynchronous I/O
    6. Avoid mouse movement events
    7. Avoid animated images
    8. Consider using Chrome Workers
  3. See also

Add-ons using the techniques described in this document are considered a legacy technology in Firefox. Don't use these techniques to develop new add-ons. Use WebExtensions instead. If you maintain an add-on which uses the techniques described here, consider migrating it to use WebExtensions.

From Firefox 53 onwards, no new legacy add-ons will be accepted on addons.mozilla.org (AMO).

From Firefox 57 onwards, WebExtensions will be the only supported extension type, and Firefox will not load other types.

Even before Firefox 57, changes coming up in the Firefox platform will break many legacy extensions. These changes include multiprocess Firefox (e10s), sandboxing, and multiple content processes. Legacy extensions that are affected by these changes should migrate to WebExtensions if they can. See the "Compatibility Milestones" document for more.

A wiki page containing resources, migration paths, office hours, and more, is available to help developers transition to the new technologies.

One of Firefox's great advantages is its extreme extensibility. Extensions can do almost anything. There is a down side to this: poorly written extensions can have a severe impact on the browsing experience, including on the overall performance of Firefox itself. This article offers some best practices and suggestions that can not only improve the performance and speed of your extension, but also of Firefox itself.

Improving startup performance

Extensions are loaded and run whenever a new browser window opens. That means every time a window opens, your extension can have an impact on how long it takes the user to see the content they're trying to view. There are several things you can do to reduce the amount of time your extension delays the appearance of the user's desired content.

Load only what you need, when you need it

Don't load things during startup that are only needed if the user clicks a button, or if a given preference is enabled when it's not. If your extension has features that only work when the user has logged into a service, don't load the resources for those features until the user actually logs in.

Use JavaScript code modules

You can create your own JavaScript code modules incorporating sets of features that are only needed under specific circumstances. This makes it easy to load chunks of your extension on the fly as needed, instead of loading everything all at once.

While JavaScript modules can be extremely useful, and provide significant performance benefits, they should be used wisely. Loading modules incurs a small cost, so breaking code up to an unnecessary degree can be counter-productive. Code should be modularized to the extent that doing so increases clarity, and loading of large or expensive chunks of code fragments can be significantly deferred.

Defer everything that you can

Most extensions have a load event listener in the main overlay that runs their startup functions. Do as little as possible here. The browser window is blocked while your add-on's load handler runs, so the more it does, the slower Firefox will appear to the user.

If there is anything that can be done even a fraction of a second later, you can use an nsITimer or the window.setTimeout() method to schedule that work for later.  Even a short delay can have a big impact.

General Performance Tips

Avoid Creating Memory Leaks

Memory leaks require the garbage collector and the cycle collector to work harder, which can significantly degrade performance.

Zombie compartments are a particular kind of memory leak that you can detect with minimal effort.  See the Zombie compartments page, especially the Proactive checking of add-ons section.

See Common causes of memory leaks in extensions for ways to avoid zombie compartments and other kinds of leaks.

As well as looking for these specific kinds of leaks, it's worth exercising your extension's functionality and checking the contents of about:memory for any excessive memory usage.  For example, bug 719601 featured a "System Principal" JavaScript compartment containing 100s of MBs of memory, which is much larger than usual.

Avoid Writing Slow CSS

  • Read the "writing efficient CSS" guide.
  • Remember that any selector in your rule which might match many different nodes is a source of inefficiency during either selector matching or dynamic update processing. This is especially bad for the latter if the selector can dynamically start or stop matching. Avoid unqualified ":hover" like the plague.

Avoid DOM mutation event listeners

DOM mutation event listeners are extremely expensive and, once added to a document even briefly, significantly harm its performance. As mutation events are officially deprecated, and there are many alternatives, they should be avoided at all costs.

Lazily load services

The XPCOMUtils JavaScript module provides two methods for lazily loading things:

  • defineLazyGetter() defines a function on a specified object that acts as a getter which will be created the first time it's used. See examples.
  • defineLazyServiceGetter() defines a function on a specified object which acts as a getter for a service. The service isn't obtained until the first time it's used. Look through the source for examples.

Many common services are already cached for you in Services.jsm.

Use asynchronous I/O

This cannot be stressed enough: never do synchronous I/O on the main thread.

Any kind of I/O on the main thread, be it disk or network I/O, can cause serious UI responsiveness issues.

  • Never use synchronous XMLHttpRequests.
  • NetUtils.jsm provides helpers for asynchronous reading and copying of files.
  • Never access a SQLite database synchronously. Use the asynchronous API instead.
  • Performing sequential, asynchronous operations can often be greatly simplified using Promises.

Avoid mouse movement events

Avoid using mouse event listeners, including mouseover, mouseout, mouseenter, mouseexit, and especially mousemove. These events happen with high frequency, so their listeners can trivially create very high CPU overhead.

When these events cannot be avoided, computation during the listeners should be kept to a minimum and real work throttled. The listeners should be added to the most specific element possible, and removed when not immediately necessary.

Avoid animated images

Animated images are much more expensive than generally expected, especially when used in XUL tree elements..

Consider using Chrome Workers

You can use a ChromeWorker to execute long running tasks or do data processing.

See also

  • Measuring Add-on Startup Performance
  • How to Improve Extension Startup Performance
  • General information about measuring and improving performance in Mozilla code

Document Tags and Contributors

Tags: 
  • Add-ons
  • Best practices
  • Extensions
  • Guide
  • NeedsContent
  • NeedsExample
  • Performance
 Contributors to this page: bunnybooboo, peyman220, wbamberg, kmaglione, ldez, Dietrich, Delapouite, kscarfone, mhenry07, lahabana, Nickolay, nnethercote, khuey, stve, madarche, Jorge.villalobos, DaveG, Sheppy, Wladimir_Palant, sdwilsh
 Last updated by: bunnybooboo, Apr 20, 2017, 5:06:35 PM
See also
  1. WebExtensions
  2. Getting started
    1. What are WebExtensions?
    2. Your first WebExtension
    3. Your second WebExtension
    4. Anatomy of a WebExtension
    5. Example WebExtensions
  3. How to
    1. Intercept HTTP requests
    2. Modify a web page
    3. Add a button to the toolbar
    4. Implement a settings page
  4. Concepts
    1. Using the JavaScript APIs
    2. User interface components
    3. Content scripts
    4. Match patterns
    5. Internationalization
    6. Content Security Policy
    7. Native messaging
  5. Porting
    1. Porting a Google Chrome extension
    2. Porting a legacy Firefox add-on
    3. Embedded WebExtensions
    4. Comparison with the Add-on SDK
    5. Comparison with XUL/XPCOM extensions
    6. Chrome incompatibilities
  6. Firefox workflow
    1. Temporary Installation in Firefox
    2. Debugging
    3. Getting started with web-ext
    4. web-ext command reference
    5. WebExtensions and the Add-on ID
    6. Publishing your WebExtension
  7. JavaScript APIs
    1. Browser support for JavaScript APIs
    2. alarms
    3. bookmarks
    4. browserAction
    5. browsingData
    6. commands
    7. contextMenus
    8. contextualIdentities
    9. cookies
    10. devtools.inspectedWindow
    11. devtools.network
    12. devtools.panels
    13. downloads
    14. events
    15. extension
    16. extensionTypes
    17. history
    18. i18n
    19. identity
    20. idle
    21. management
    22. notifications
    23. omnibox
    24. pageAction
    25. privacy
    26. runtime
    27. sessions
    28. sidebarAction
    29. storage
    30. tabs
    31. topSites
    32. webNavigation
    33. webRequest
    34. windows
  8. Manifest keys
    1. applications
    2. author
    3. background
    4. browser_action
    5. chrome_settings_overrides
    6. chrome_url_overrides
    7. commands
    8. content_scripts
    9. content_security_policy
    10. default_locale
    11. description
    12. developer
    13. devtools_page
    14. homepage_url
    15. icons
    16. manifest_version
    17. name
    18. omnibox
    19. options_ui
    20. page_action
    21. permissions
    22. protocol_handlers
    23. short_name
    24. sidebar_action
    25. version
    26. web_accessible_resources
  9. Add-on SDK
  10. Getting started
    1. Installation
    2. Getting started
    3. Troubleshooting
  11. High-Level APIs
    1. addon-page
    2. base64
    3. clipboard
    4. context-menu
    5. hotkeys
    6. indexed-db
    7. l10n
    8. notifications
    9. page-mod
    10. page-worker
    11. panel
    12. passwords
    13. private-browsing
    14. querystring
    15. request
    16. selection
    17. self
    18. simple-prefs
    19. simple-storage
    20. system
    21. tabs
    22. timers
    23. ui
    24. url
    25. webextension
    26. widget
    27. windows
  12. Low-Level APIs
    1. /loader
    2. chrome
    3. console/plain-text
    4. console/traceback
    5. content/content
    6. content/loader
    7. content/mod
    8. content/symbiont
    9. content/worker
    10. core/heritage
    11. core/namespace
    12. core/promise
    13. dev/panel
    14. event/core
    15. event/target
    16. frame/hidden-frame
    17. frame/utils
    18. fs/path
    19. io/byte-streams
    20. io/file
    21. io/text-streams
    22. lang/functional
    23. lang/type
    24. loader/cuddlefish
    25. loader/sandbox
    26. net/url
    27. net/xhr
    28. places/bookmarks
    29. places/favicon
    30. places/history
    31. platform/xpcom
    32. preferences/event-target
    33. preferences/service
    34. remote/child
    35. remote/parent
    36. stylesheet/style
    37. stylesheet/utils
    38. system/child_process
    39. system/environment
    40. system/events
    41. system/runtime
    42. system/unload
    43. system/xul-app
    44. tabs/utils
    45. test/assert
    46. test/harness
    47. test/httpd
    48. test/runner
    49. test/utils
    50. ui/button/action
    51. ui/button/toggle
    52. ui/frame
    53. ui/id
    54. ui/sidebar
    55. ui/toolbar
    56. util/array
    57. util/collection
    58. util/deprecate
    59. util/list
    60. util/match-pattern
    61. util/object
    62. util/uuid
    63. window/utils
  13. Firefox for Android
  14. Getting started
    1. Walkthrough
    2. Debugging
    3. Code snippets
  15. APIs
    1. Accounts.jsm
    2. BrowserApp
    3. HelperApps.jsm
    4. Home.jsm
    5. HomeProvider.jsm
    6. JavaAddonManager.jsm
    7. NativeWindow
    8. Notifications.jsm
    9. PageActions.jsm
    10. Prompt.jsm
    11. RuntimePermissions.jsm
    12. Snackbars.jsm
    13. Sound.jsm
    14. Tab
  16. Legacy
  17. Restartless extensions
    1. Overview
  18. Overlay extensions
    1. Overview
  19. Themes
  20. Lightweight themes
    1. Overview
  21. Complete themes
    1. Overview
  22. Publishing add-ons
  23. Guides
    1. Signing and distribution overview
    2. Submit an add-on
    3. Review policies
    4. Developer agreement
    5. Featured add-ons
    6. Contact addons.mozilla.org
  24. Community and support
  25. Channels
    1. Add-ons blog
    2. Add-on forums
    3. Stack Overflow
    4. Development newsgroup
    5. IRC Channel