• Skip to main content
  • Select language
  • Skip to search
MDN Web Docs
  • Technologies
    • HTML
    • CSS
    • JavaScript
    • Graphics
    • HTTP
    • APIs / DOM
    • WebExtensions
    • MathML
  • References & Guides
    • Learn web development
    • Tutorials
    • References
    • Developer Guides
    • Accessibility
    • Game development
    • ...more docs
Archive of obsolete content
  1. MDN
  2. Archive of obsolete content
  3. Archived Mozilla and build documentation
  4. Mozilla Crypto FAQ

Mozilla Crypto FAQ

In This Article
    1. Cryptographic functionality in Mozilla
      1. Have all the issues with Mozilla and crypto now been resolved?
      2. What functionality is implemented by the Mozilla crypto code released so far? When will Mozilla get full support for SSL and S/MIME?
      3. What is the open source license used for the Mozilla crypto code?
      4. Will mozilla.org accept new contributions of crypto code?
      5. What about Mozilla support for PGP and other protocols besides SSL and S/MIME? Will we be able to use GNU Privacy Guard or other PGP versions with Mozilla?
      6. Is information available describing the format of the PSM key and certificate database, so that other software can reuse existing user keys and certificates managed by PSM?
    2. Information for Mozilla contributors
      1. I want to mirror the Mozilla FTP site. Do I need to do anything with regard to U.S. encryption export controls?
    3. Further information on U.S. export controls on encryption software
      1. What are the relevant U.S. government laws and regulations governing export from the U.S. of encryption software?
      2. I thought export of encryption software from the U.S. was governed by the International Traffic in Arms Regulations. What happened to the ITAR?
      3. Haven't U.S. export controls on encryption software already been ruled unconstitutional?
      4. Where can I learn more about U.S. export controls on encryption software?
  1. Original Document Information

Warning: The content of this article may be out of date. It was last updated in 2000.

In this document I try to answer some frequently asked questions about the Mozilla web browser and mail/news client and its support for SSL, S/MIME, and related features based on cryptographic technology. Note that this document is for your information only and is not intended as legal advice. If you wish to develop and distribute cryptographic software, particularly for commercial sale or distribution, then you should consult an attorney with expertise in the particular laws and regulations that apply in your jurisdiction.

I've updated this version of the Mozilla Crypto FAQ to discuss the situation now that the RSA public key algorithm is in the public domain and a full open source crypto implementation is being added to the Mozilla code base. Information in the FAQ also reflects the new U.S. encryption export regulations published on January 14, 2000, the release on February 11, 2000, of source code for SSL, S/MIME, and general PKI functionality for use in the Mozilla project, and the "Bernstein advisory" issued by the Bureau of Export Administration on February 17, 2000.

The questions in this FAQ address Mozilla's support for encryption and related security functionality, information important to Mozilla contributors relating to encryption functionality in Mozilla, and general questions on U.S. regulation of encryption technology.

Cryptographic functionality in Mozilla

Have all the issues with Mozilla and crypto now been resolved?

Almost. Now that the RSA patent is in the public domain, Mozilla crypto development can proceed with minimal restrictions. In the near future the Mozilla code base will include a complete open source cryptographic library, and Mozilla will include SSL support as a standard feature.

After the U.S. government relaxed U.S. export regulations in January 2000 to allow export of source code for open source software implementing encryption, the major remaining legal obstacle to Mozilla crypto development was the fact that RSA Security, Inc., held a U.S. patent on the RSA public key algorithm. In February 2000 iPlanet E-Commerce Solutions (a Sun-Netscape Alliance) released source code through mozilla.org for the Personal Security Manager and Network Security Services software; this source code included support for the SSL protocol, but due to the RSA patent and related legal issues it did not originally contain code for RSA or other cryptographic algorithms.

On September 6, 2000, RSA Security released the RSA patent into the public domain, two weeks before the patent was scheduled to expire (on September 20, 2000). Shortly thereafter the NSS developers began work on an open source implementation of the RSA algorithm; that code, together with code previously developed for other cryptographic algorithms, will be included in a new version 3.1 of the NSS open source cryptographic and PKI library.

This new RSA-capable version of NSS will then be included in a future version of the open source PSM software, which will provide SSL support for Mozilla. At that point both NSS and PSM will be completely buildable using the open source code available from the mozilla.org site, and NSS and PSM will be included in the Mozilla binary releases distributed by mozilla.org.

For more information on the RSA patent see the RSA Security press release announcing release of the patent into the public domain, and the RSA patent itself.

For information on new US encryption export regulations, see the U.S. Department of Commerce press release announcing the new regulations as well as the updated regulations (PDF) themselves. Export of source code for open source software is addressed in Part 740 (PDF), section 740.13(e), "Unrestricted encryption source code"; export of binaries is addressed in 740.17.

(You may also be interested in a more in-depth analysis of the new regulations, with an emphasis on how they affect open source software.)

For more information on the SSL, S/MIME, PKI, and other crypto source code being developed as part of the Mozilla project, see the PKI project page and of course the source code itself. Also see the original Sun-Netscape Alliance press release on the release of PKI source code and the corresponding mozilla.org press release.

What functionality is implemented by the Mozilla crypto code released so far? When will Mozilla get full support for SSL and S/MIME?

The Mozilla crypto code will shortly include a full implementation of the RSA and other cryptographic algorithms; that implementation will form the basis of a complete open source SSL implementation for Mozilla. S/MIME support is also under development, but may not be available in Mozilla until after the 1.0 release.

Version 3.1 of the Network Security Services library will include a complete open source implementation of the cryptographic algorithms needed for Mozilla SSL support, including the RSA public key algorithm (now in the public domain). NSS 3.1 will be available in beta form in September 2000, with the final release to follow in October 2000. NSS 3.1 will be used in the 1.3 release of PSM, which will provide a complete open source implementation of SSL for Mozilla. PSM 1.3 will also provide support for Mozilla users to obtain personal digital certificates and perform other PKI-related functions.

Note that due to various implementation issues, PSM support for Mozilla on the Macintosh is lagging somewhat behind PSM support on Windows, Linux, and other platforms. Also note that the NSS developers are creating code for support of S/MIME secure messages; however full S/MIME support within Mozilla will require further development, and may not be available until after the Mozilla 1.0 release.

Finally, note that NSS (and thus PSM) can also be built using a licensed copy of the RSA BSAFE Crypto-C library (versions 4.1 or 5.0). iPlanet E-Commerce Solutions has released Netscape-branded binary versions of Personal Security Manager that incorporate the RSA BSAFE Library; the Netscape PSM software can be installed and used with binary Mozilla versions.

For the very latest information about PSM, NSS, and other crypto-related Mozilla developments, see the mozilla.dev.tech.crypto newsgroup or the corresponding dev-tech-crypto mailing list. For more information on NSS 3.1 see the NSS 3.1 plan and the NSS 3.1 build instructions; for more information on PSM 1.3 see the PSM 1.3 task list posted by David Drinan.

For more information on the Netscape PSM binaries see the Netscape Personal Security Manager for Mozilla page.

What is the open source license used for the Mozilla crypto code?

The released source code is dual-licensed under the MPL and the GPL.

The Mozilla SSL, S/MIME, and PKI source code is licensed under the Mozilla Public License (version 1.1), with the GNU General Public License (version 2.0 or later) available as an alternate license. You may choose to use the code either under the terms of the MPL or under the terms of the GPL.

This form of licensing was chosen to allow the released Personal Security Manager and Network Security Services source code to be used in as many contexts as possible; for example, the PSM and NSS code can be used in Mozilla under MPL terms, and can also be used in GNU and other projects under GPL terms. If you create and distribute modifications to the original PSM and NSS code, we ask that you in turn make such modifications available under both the MPL and GPL. (Note that mozilla.org will not accept contributed modifications into future PSM/NSS source releases unless they are so licensed.)

For more information see the Mozilla Public License and the GNU General Public License. Specific questions about licensing of the PSM and NSS source code should be directed to the netscape.public.mozilla.license newsgroup or the associated mozilla-license mailing list.

Will mozilla.org accept new contributions of crypto code?

Yes, as long as patent or other legal issues do not prevent such code from being used by the general community of Mozilla developers. New contributions of crypto code should also be reviewed and approved by the appropriate Mozilla module owners, just as with any other Mozilla contributions.

For more information about patents related to cryptographic algorithms and implementation techniques, see the questions relating to patents on cryptography in RSA Laboratories' cryptography FAQ. See the Mozilla open source PKI projects pages for the names and email addresses of the Mozilla module owners for crypto-related code.

What about Mozilla support for PGP and other protocols besides SSL and S/MIME? Will we be able to use GNU Privacy Guard or other PGP versions with Mozilla?

Support for PGP and other security-related protocols and formats can potentially be added to Mozilla in the same manner as SSL and S/MIME; if anyone is interested in working on such support within the Mozilla project then they are welcome to do so. We know of at least two efforts which may produce PGP support for Mozilla.

As noted above, the PSM code implements SSL and (in the future) S/MIME support for Mozilla by taking advantage of generic high-level Mozilla public APIs used to add new protocols and message formats. These same APIs can be used to add support to Mozilla for other security schemes, including potentially PGP. If anyone is interested on working such support within the Mozilla project then they are welcome to do so. However note that, as with SSL and S/MIME, mozilla.org will not host code implementing patented algorithms that are not generally usable by all Mozilla developers (including Mozilla developers creating products for commercial sale and distribution).

Also note that Mozilla support for PGP and other security schemes may also be made available by commercial security vendors or by independent developers, using the various public APIs already present in Mozilla. Based on statements made in various Internet forums it appears that the developers of GNU Privacy Guard may create a plugin module to support invocation of GnuPG functionality from Mozilla; Network Associates may also create a commercial PGP plugin for Mozilla. You should contact those vendors or developers directly for more information concerning their plans.

See the Open Directory references for general PGP information, including contact information for companies and independent developers producing PGP implementations.

Is information available describing the format of the PSM key and certificate database, so that other software can reuse existing user keys and certificates managed by PSM?

Yes, documentation of the database format is available; however we cannot guarantee that the format of the database will remain unchanged in the future.

The initial release of SSL, S/MIME, and general PKI source code from iPlanet E-Commerce Solutions includes some documentation on the format of the key and certificate database. As with Mozilla documentation in general, mozilla.org will be glad to host any other documentation contributed to describe database formats, APIs, and other technical aspects of the released SSL, S/MIME, and PKI source code.

However, as with APIs internal to Mozilla modules, mozilla.org cannot guarantee that the format of the key and certificate database will remain unchanged over time; in particular, changes may be introduced at some point that break compatibility with existing applications. Also, changing the database directly from an application risks causing database corruption and subsequent problems in PSM and applications like Mozilla using PSM. For these reasons we strongly recommend that Mozilla developers and others access the key and certificate database only through public APIs provided by the NSS library.

For more information see the documentation for the cert7.db certificate database. Also see the documents "Into the Black Box: A Case Study in Obtaining Visibility into Commercial Software", "Netscape Certificate Database Information", and "Netscape Communicator Key Database Format", the results of independent attempts to describe the format of the Netscape Communicator 4.x key and certificate database (with which the PSM key and certificate database format is compatible).

Information for Mozilla contributors

I want to mirror the Mozilla FTP site. Do I need to do anything with regard to U.S. encryption export controls?

No, you do not. As long as you are simply mirroring the Mozilla site as is, you do not need to provide any notification to the Bureau of Export Administration or NSA. If you are outside the U.S. you do not need to provide such notification in any case, but you may need to take other actions to comply with laws and regulations in your own country concerning encryption technologies.

As a mirror of the Mozilla FTP site you will automatically be distributing open source encryption code as well. If you are a U.S. resident and/or your mirror site is in the U.S. then you are required to comply with applicable U.S. regulations governing the export of encryption software. Your particular obligations depend on your exact circumstances, and we cannot provide legal advice to you.

However, in an advisory opinion issued in reference to the Bernstein case, the Bureau of Export Administration (BXA) has stated the following: "Concerning the posting onto a mirror or archive site of already-posted source code, notification is required only for the initial posting." BXA and NSA have already been notified of the posting of encryption-related source code on the Mozilla site, and in light of this opinion we have therefore decided not to ask mirror sites to provide notification themselves.

Note that in any case the notification procedures outlined in the Export Administration Regulations apply only to U.S. residents and sites located in the U.S. If you are not a U.S. citizen or resident and your mirror site is located outside the U.S. then you are not subject to U.S. encryption export regulations; however you may be subject to other regulations related to encryption, and are responsible for complying with any such regulations applying in your jurisdiction.

For information on notification requirements related to the export of open source encryption source code, see the Export Administration Regulations, in particular Part 740, sections 740.13(e), "Unrestricted encryption source code", and 740.17(g), "Reporting requirements". For the statement by the Bureau of Export Administration on notification requirements for mirror sites, see the section "Notification Requirements" in the Bernstein advisory opinion contained in the letter dated February 17, 2000, from James Lewis of BXA to Cindy Cohn, counsel for Daniel Bernstein.

Further information on U.S. export controls on encryption software

What are the relevant U.S. government laws and regulations governing export from the U.S. of encryption software?

The Export Administration Regulations, the Export Administration Act of 1979, and related U.S. presidential executive orders address export of encryption software from the U.S.

The main U.S. government regulations governing the export from the U.S. of cryptographic software are the Export Administration Regulations (EAR), also known as 15 CFR chapter VII subchapter C, or 15 CFR Parts 730-774. ("CFR" stands for "Code of Federal Regulations.") The Export Administration Regulations were created by the Bureau of Export Administration (BXA) and were designed primarily to implement the requirements of the Export Administration Act of 1979 (as amended), also known as 50 USC appendices 2401-2420. ("USC" stands for "United States Code.") The EAA was passed as temporary legislation; however the President of the United States has periodically issued orders to continue the EAA and EAR, exercising authority under the International Emergency Economic Powers Act, also known as 50 USC 1701-1706.

For more information see 15 CFR Part 730, section 730.2 (concerning statutory authority for the EAR), and the document "Principal Statutory Authority for the Export Administration Regulations", which contains copies of the Export Administration Act of 1979 (as amended), the International Emergency Economic Powers Act (as amended), and related legislation and executive orders.

I thought export of encryption software from the U.S. was governed by the International Traffic in Arms Regulations. What happened to the ITAR?

The ITAR still exist, but are no longer used in the context of export control of encryption software; for this purpose they have been replaced by the EAR.

Authority for non-military encryption export was transferred from the U.S. State Department to the U.S. Department of Commerce by Presidential Executive Order 13026 on November 15, 1996, for regulation under the Export Administration Regulations (EAR), along with all other export-controlled commercial products. At that time encryption hardware, software, and technology was transferred from the U.S. Munitions List to the Commerce Control List (CCL) of the EAR.

For more information see the document "Principal Statutory Authority for the Export Administration Regulations", which contains a copy of Executive Order 13026.

Haven't U.S. export controls on encryption software already been ruled unconstitutional?

Yes in a specific case, but the decision may yet be overruled. Also, the case itself may be declared moot in light of the new U.S. encryption export regulations.

For several years Professor Daniel Bernstein (currently at the University of Illinois at Chicago) has pursued a lawsuit against the U.S. government essentially claiming that U.S. export control regulations on encryption software and related conduct with regard to cryptography (e.g., "technical assistance") were unconstitutional. (Bernstein's suit was originally directed at the ITAR and related regulations, since at the time the suit was filed the current Export Administration Regulations were not yet in effect with respect to encryption software.) Bernstein claimed that the U.S. export regulations were in essence a licensing scheme designed to impede or prohibit certain types of speech (e.g., publishing cryptographic source code in electronic form), and were therefore unconstitutional under the First Amendment to the U.S. constitution. The U.S. government claimed in return that cryptographic software was regulated based solely on its ability to be used to secure communications and data, and that the national security interest in so regulating it overrode any First Amendment protections; as the export regulations put it, "encryption software is controlled because of its functional capacity, and not because of any informational value of such software". The government also claimed that publication of cryptographic software in electronic form made such functional use easier than publication in printed form, and that that was sufficient to justify treating the two forms differently in the regulations.

On August 25, 1997, the U.S. District Court for the Northern District of California issued a final ruling (written by Judge Marilyn Hall Patel) that "the [U.S. government] encryption regulations are an unconstitutional prior restraint in violation of the First Amendment." The U.S. government appealed this decision to the U.S. 9th Circuit Court of Appeals, and on May 6, 1999, the court upheld the District Court's ruling in a 2-1 decision, with Judge Betty Fletcher writing for the majority that the ITAR and EAR export restrictions against encryption are an unconstitutional prior restraint of free expression, impermissible under the First Amendment to the U.S. Constitution.

However this ruling did not settle the issue of the constitutionality of U.S. export control regulations. The U.S. Department of Justice has sought to appeal the decision, first to all eleven members of the 9th Circuit Court of Appeals (referred to as the court en banc, or full court) and then possibly to the U.S. Supreme Court. Until the appeals process is completed the U.S. government will continue to enforce current U.S. export regulations.

In light of the new encryption export regulations it is also possible that the Bernstein case may be declared moot on the basis that Professor Bernstein is now free to do what he originally requested to do, i.e., publish his encryption source code online.

For more information see the archives on the Bernstein case maintained by the Electronic Frontier Foundation, particularly the 9th Circuit Court of Appeals ruling, the press release issued by the U.S. Bureau of Export Administration immediately afterward, and the U.S. Export Administration Regulations themselves, particularly 15 CFR Part 774, Supplement No. 1, Category 5, Part 2, entry 5D002 (note on "functional capacity") and 15 CFR Part 734, paragraphs 734.3(b)(2) and (b)(3) and accompanying note (printed form vs. electronic form). See also the request for an advisory opinion made to the Bureau of Export Administration by Bernstein's lawyers and the resulting advisory opinion issued by BXA in response to that request.

Where can I learn more about U.S. export controls on encryption software?

For more information on U.S. export control of encryption software and related topics, see the following online references:

  • The ITAR, EAR and encryption export archive maintained by the Electronic Freedom Foundation (EFF).
  • The cryptography policy page maintained by the Electronic Privacy Information Center (EPIC).
  • The encryption page maintained by the Center for Democracy and Technology (CDT).

The following books may also be of interest if you want to know more about the history and politics of U.S. export control of encryption software:

  • Privacy on the Line: The Politics of Wiretapping and Encryption, by Whitfield Diffie and Susan Landau. Provides historical context and technical background for the recent political battles around encryption and privacy issues.
  • Technology and Privacy: The New Landscape, by Philip Agre and Marc Rotenberg (ed.). A set of ten essays on various aspects of privacy and technological developments affecting it.
  • The Electronic Privacy Papers: Documents on the Battle for Privacy in the Age of Surveillance, by Bruce Schneier and David Banisar (ed.). A collection of public documents relating to U.S. encryption policy and related topics.
  • Building in Big Brother: The Cryptographic Policy Debate, by Lance Hoffman (ed.). An earlier (circa 1995) collection of essays and public documents, with a concentration on the Clipper chip controversy and the Digital Telephony Act.
  • Cryptography & Liberty 2000: An International Survey of Encryption Policy, by the Electronic Privacy Information Center. The latest in a series of annual surveys of government policies relating to encryption, covering over a hundred countries.
  • The Limits of Trust: Cryptography, Governments, and Electronic Commerce, by Stewart Baker and Paul Hurst. An in-depth (but badly outdated) discussion of the legal framework for regulation of cryptography in various countries around the world, including the U.S.

See the EPIC bookstore for more recommendations of books discussing privacy in general and public policies related to privacy issues.

Original Document Information

  • Author(s): Frank Hecker
  • Last Updated Date: September 10, 2000 (Version 2.11)
  • Copyright Information: Portions of this content are © 1998–2007 by individual mozilla.org contributors; content available under a Creative Commons license | Details.

Document Tags and Contributors

Tags: 
  • NSS
  • Outdated_articles
 Contributors to this page: teoli, Kohei, Mgjbot, kohei.yoshino
 Last updated by: Kohei, Dec 12, 2007, 1:29:20 AM

  1. .htaccess ( hypertext access )
  2. <input> archive
  3. Add-ons
    1. Add-ons
    2. Firefox addons developer guide
    3. Interaction between privileged and non-privileged pages
    4. Tabbed browser
    5. bookmarks.export()
    6. bookmarks.import()
  4. Adding preferences to an extension
  5. An Interview With Douglas Bowman of Wired News
  6. Apps
    1. Apps
    2. App Development API Reference
    3. Designing Open Web Apps
    4. Graphics and UX
    5. Open web app architecture
    6. Tools and frameworks
    7. Validating web apps with the App Validator
  7. Archived Mozilla and build documentation
    1. Archived Mozilla and build documentation
    2. ActiveX Control for Hosting Netscape Plug-ins in IE
    3. Archived SpiderMonkey docs
    4. Autodial for Windows NT
    5. Automated testing tips and tricks
    6. Automatic Mozilla Configurator
    7. Automatically Handle Failed Asserts in Debug Builds
    8. BlackConnect
    9. Blackwood
    10. Bonsai
    11. Bookmark Keywords
    12. Building TransforMiiX standalone
    13. Chromeless
    14. Creating a Firefox sidebar extension
    15. Creating a Microsummary
    16. Creating a Mozilla Extension
    17. Creating a Release Tag
    18. Creating a Skin for Firefox/Getting Started
    19. Creating a Skin for Mozilla
    20. Creating a Skin for SeaMonkey 2.x
    21. Creating a hybrid CD
    22. Creating regular expressions for a microsummary generator
    23. DTrace
    24. Dehydra
    25. Developing New Mozilla Features
    26. Devmo 1.0 Launch Roadmap
    27. Download Manager improvements in Firefox 3
    28. Download Manager preferences
    29. Drag and Drop
    30. Embedding FAQ
    31. Embedding Mozilla in a Java Application using JavaXPCOM
    32. Error Console
    33. Exception logging in JavaScript
    34. Existing Content
    35. Extension Frequently Asked Questions
    36. Fighting Junk Mail with Netscape 7.1
    37. Firefox Sync
    38. Force RTL
    39. GRE
    40. Gecko Coding Help Wanted
    41. HTTP Class Overview
    42. Hacking wiki
    43. Help Viewer
    44. Helper Apps (and a bit of Save As)
    45. Hidden prefs
    46. How to Write and Land Nanojit Patches
    47. Introducing the Audio API extension
    48. Java in Firefox Extensions
    49. JavaScript crypto
    50. Jetpack
    51. Litmus tests
    52. Makefile.mozextension.2
    53. Microsummary topics
    54. Migrate apps from Internet Explorer to Mozilla
    55. Monitoring downloads
    56. Mozilla Application Framework
    57. Mozilla Crypto FAQ
    58. Mozilla Modules and Module Ownership
    59. Mozprocess
    60. Mozprofile
    61. Mozrunner
    62. Nanojit
    63. New Skin Notes
    64. Persona
    65. Plug-n-Hack
    66. Plugin Architecture
    67. Porting NSPR to Unix Platforms
    68. Priority Content
    69. Prism
    70. Proxy UI
    71. Remote XUL
    72. SXSW 2007 presentations
    73. Space Manager Detailed Design
    74. Space Manager High Level Design
    75. Standalone XPCOM
    76. Stress testing
    77. Structure of an installable bundle
    78. Supporting private browsing mode
    79. Table Cellmap
    80. Table Cellmap - Border Collapse
    81. Table Layout Regression Tests
    82. Table Layout Strategy
    83. Tamarin
    84. The Download Manager schema
    85. The life of an HTML HTTP request
    86. The new nsString class implementation (1999)
    87. TraceVis
    88. Treehydra
    89. URIScheme
    90. URIs and URLs
    91. Using Monotone With Mozilla CVS
    92. Using SVK With Mozilla CVS
    93. Using addresses of stack variables with NSPR threads on win16
    94. Venkman
    95. Video presentations
    96. Why Embed Gecko
    97. XML in Mozilla
    98. XPInstall
    99. XPJS Components Proposal
    100. XRE
    101. XTech 2005 Presentations
    102. XTech 2006 Presentations
    103. XUL Explorer
    104. XULRunner
    105. ant script to assemble an extension
    106. calICalendarView
    107. calICalendarViewController
    108. calIFileType
    109. xbDesignMode.js
  8. Archived open Web documentation
    1. Archived open Web documentation
    2. Browser Detection and Cross Browser Support
    3. Browser Feature Detection
    4. Displaying notifications (deprecated)
    5. E4X
    6. E4X Tutorial
    7. LiveConnect
    8. MSX Emulator (jsMSX)
    9. Old Proxy API
    10. Properly Using CSS and JavaScript in XHTML Documents
    11. Reference
    12. Scope Cheatsheet
    13. Server-Side JavaScript
    14. Sharp variables in JavaScript
    15. Standards-Compliant Authoring Tools
    16. Using JavaScript Generators in Firefox
    17. Window.importDialog()
    18. Writing JavaScript for XHTML
    19. XForms
    20. background-size
    21. forEach
  9. B2G OS
    1. B2G OS
    2. Automated Testing of B2G OS
    3. B2G OS APIs
    4. B2G OS add-ons
    5. B2G OS architecture
    6. B2G OS build prerequisites
    7. B2G OS phone guide
    8. Building B2G OS
    9. Building and installing B2G OS
    10. Building the B2G OS Simulator
    11. Choosing how to run Gaia or B2G
    12. Customization with the .userconfig file
    13. Debugging on Firefox OS
    14. Developer Mode
    15. Developing Firefox OS
    16. Firefox OS Simulator
    17. Firefox OS apps
    18. Firefox OS board guide
    19. Firefox OS developer release notes
    20. Firefox OS security
    21. Firefox OS usage tips
    22. Gaia
    23. Installing B2G OS on a mobile device
    24. Introduction to Firefox OS
    25. Mulet
    26. Open web apps quickstart
    27. Pandaboard
    28. PasscodeHelper Internals
    29. Porting B2G OS
    30. Preparing for your first B2G build
    31. Resources
    32. Running tests on Firefox OS: A guide for developers
    33. The B2G OS platform
    34. Troubleshooting B2G OS
    35. Using the App Manager
    36. Using the B2G emulators
    37. Web Bluetooth API (Firefox OS)
    38. Web Telephony API
    39. Web applications
  10. Beginner tutorials
    1. Beginner tutorials
    2. Creating reusable content with CSS and XBL
    3. Underscores in class and ID Names
    4. XML data
    5. XUL user interfaces
  11. Case Sensitivity in class and id Names
  12. Creating a dynamic status bar extension
  13. Creating a status bar extension
  14. Gecko Compatibility Handbook
  15. Getting the page URL in NPAPI plugin
  16. Index
  17. Inner-browsing extending the browser navigation paradigm
  18. Install.js
  19. JXON
  20. List of Former Mozilla-Based Applications
  21. List of Mozilla-Based Applications
  22. Localizing an extension
  23. MDN
    1. MDN
    2. Content kits
  24. MDN "meta-documentation" archive
    1. MDN "meta-documentation" archive
    2. Article page layout guide
    3. Blog posts to integrate into documentation
    4. Current events
    5. Custom CSS classes for MDN
    6. Design Document
    7. DevEdge
    8. Developer documentation process
    9. Disambiguation
    10. Documentation Wishlist
    11. Documentation planning and tracking
    12. Editing MDN pages
    13. Examples
    14. Existing Content/DOM in Mozilla
    15. External Redirects
    16. Finding the right place to document bugs
    17. Getting started as a new MDN contributor
    18. Landing page layout guide
    19. MDN content on WebPlatform.org
    20. MDN page layout guide
    21. MDN subproject list
    22. Needs Redirect
    23. Page types
    24. RecRoom documentation plan
    25. Remove in-content iframes
    26. Team status board
    27. Trello
    28. Using the Mozilla Developer Center
    29. Welcome to the Mozilla Developer Network
    30. Writing chrome code documentation plan
    31. Writing content
  25. MMgc
  26. Makefile - .mk files
  27. Marketplace
    1. Marketplace
    2. API
    3. Monetization
    4. Options
    5. Publishing
  28. Mozilla release FAQ
  29. Newsgroup summaries
    1. Newsgroup summaries
    2. Format
    3. Mozilla.dev.apps.firefox-2006-09-29
    4. Mozilla.dev.apps.firefox-2006-10-06
    5. mozilla-dev-accessibility
    6. mozilla-dev-apps-calendar
    7. mozilla-dev-apps-firefox
    8. mozilla-dev-apps-thunderbird
    9. mozilla-dev-builds
    10. mozilla-dev-embedding
    11. mozilla-dev-extensions
    12. mozilla-dev-i18n
    13. mozilla-dev-l10n
    14. mozilla-dev-planning
    15. mozilla-dev-platform
    16. mozilla-dev-quality
    17. mozilla-dev-security
    18. mozilla-dev-tech-js-engine
    19. mozilla-dev-tech-layout
    20. mozilla-dev-tech-xpcom
    21. mozilla-dev-tech-xul
    22. mozilla.dev.apps.calendar
    23. mozilla.dev.tech.js-engine
  30. Obsolete: XPCOM-based scripting for NPAPI plugins
  31. Plugins
    1. Plugins
    2. Adobe Flash
    3. External resources for plugin creation
    4. Logging Multi-Process Plugins
    5. Monitoring plugins
    6. Multi-process plugin architecture
    7. NPAPI plugin developer guide
    8. NPAPI plugin reference
    9. Samples and Test Cases
    10. Shipping a plugin as a Toolkit bundle
    11. Supporting private browsing in plugins
    12. The First Install Problem
    13. Writing a plugin for Mac OS X
    14. XEmbed Extension for Mozilla Plugins
  32. SAX
  33. Security
    1. Security
    2. Digital Signatures
    3. Encryption and Decryption
    4. Introduction to Public-Key Cryptography
    5. Introduction to SSL
    6. NSPR Release Engineering Guide
    7. SSL and TLS
  34. Solaris 10 Build Prerequisites
  35. Sunbird Theme Tutorial
  36. Table Reflow Internals
  37. Tamarin Tracing Build Documentation
  38. The Basics of Web Services
  39. Themes
    1. Themes
    2. Building a Theme
    3. Common Firefox theme issues and solutions
    4. Creating a Skin for Firefox
    5. Making sure your theme works with RTL locales
    6. Theme changes in Firefox 2
    7. Theme changes in Firefox 3
    8. Theme changes in Firefox 3.5
    9. Theme changes in Firefox 4
  40. Updating an extension to support multiple Mozilla applications
  41. Using IO Timeout And Interrupt On NT
  42. Using SSH to connect to CVS
  43. Using workers in extensions
  44. WebVR
    1. WebVR
    2. WebVR environment setup
  45. XQuery
  46. XUL Booster
  47. XUL Parser in Python