1 /*
2 * Licensed to the Apache Software Foundation (ASF) under one or more
3 * contributor license agreements. See the NOTICE file distributed with
4 * this work for additional information regarding copyright ownership.
5 * The ASF licenses this file to You under the Apache License, Version 2.0
6 * (the "License"); you may not use this file except in compliance with
7 * the License. You may obtain a copy of the License at
8 *
9 * http://www.apache.org/licenses/LICENSE-2.0
10 *
11 * Unless required by applicable law or agreed to in writing, software
12 * distributed under the License is distributed on an "AS IS" BASIS,
13 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
14 * See the License for the specific language governing permissions and
15 * limitations under the License.
16 */
17 package org.apache.commons.math3.optim.nonlinear.scalar.noderiv;
18
19 import java.util.Comparator;
20 import org.apache.commons.math3.analysis.MultivariateFunction;
21 import org.apache.commons.math3.exception.NullArgumentException;
22 import org.apache.commons.math3.exception.MathUnsupportedOperationException;
23 import org.apache.commons.math3.exception.util.LocalizedFormats;
24 import org.apache.commons.math3.optim.nonlinear.scalar.GoalType;
25 import org.apache.commons.math3.optim.ConvergenceChecker;
26 import org.apache.commons.math3.optim.PointValuePair;
27 import org.apache.commons.math3.optim.SimpleValueChecker;
28 import org.apache.commons.math3.optim.OptimizationData;
29 import org.apache.commons.math3.optim.nonlinear.scalar.MultivariateOptimizer;
30
31 /**
32 * This class implements simplex-based direct search optimization.
33 *
34 * <p>
35 * Direct search methods only use objective function values, they do
36 * not need derivatives and don't either try to compute approximation
37 * of the derivatives. According to a 1996 paper by Margaret H. Wright
38 * (<a href="http://cm.bell-labs.com/cm/cs/doc/96/4-02.ps.gz">Direct
39 * Search Methods: Once Scorned, Now Respectable</a>), they are used
40 * when either the computation of the derivative is impossible (noisy
41 * functions, unpredictable discontinuities) or difficult (complexity,
42 * computation cost). In the first cases, rather than an optimum, a
43 * <em>not too bad</em> point is desired. In the latter cases, an
44 * optimum is desired but cannot be reasonably found. In all cases
45 * direct search methods can be useful.
46 * </p>
47 * <p>
48 * Simplex-based direct search methods are based on comparison of
49 * the objective function values at the vertices of a simplex (which is a
50 * set of n+1 points in dimension n) that is updated by the algorithms
51 * steps.
52 * <p>
53 * <p>
54 * The simplex update procedure ({@link NelderMeadSimplex} or
55 * {@link MultiDirectionalSimplex}) must be passed to the
56 * {@code optimize} method.
57 * </p>
58 * <p>
59 * Each call to {@code optimize} will re-use the start configuration of
60 * the current simplex and move it such that its first vertex is at the
61 * provided start point of the optimization.
62 * If the {@code optimize} method is called to solve a different problem
63 * and the number of parameters change, the simplex must be re-initialized
64 * to one with the appropriate dimensions.
65 * </p>
66 * <p>
67 * Convergence is checked by providing the <em>worst</em> points of
68 * previous and current simplex to the convergence checker, not the best
69 * ones.
70 * </p>
71 * <p>
72 * This simplex optimizer implementation does not directly support constrained
73 * optimization with simple bounds; so, for such optimizations, either a more
74 * dedicated algorithm must be used like
75 * {@link CMAESOptimizer} or {@link BOBYQAOptimizer}, or the objective
76 * function must be wrapped in an adapter like
77 * {@link org.apache.commons.math3.optim.nonlinear.scalar.MultivariateFunctionMappingAdapter
78 * MultivariateFunctionMappingAdapter} or
79 * {@link org.apache.commons.math3.optim.nonlinear.scalar.MultivariateFunctionPenaltyAdapter
80 * MultivariateFunctionPenaltyAdapter}.
81 * <br/>
82 * The call to {@link #optimize(OptimizationData[]) optimize} will throw
83 * {@link MathUnsupportedOperationException} if bounds are passed to it.
84 * </p>
85 *
86 * @since 3.0
87 */
88 public class SimplexOptimizer extends MultivariateOptimizer {
89 /** Simplex update rule. */
90 private AbstractSimplex simplex;
91
92 /**
93 * @param checker Convergence checker.
94 */
95 public SimplexOptimizer(ConvergenceChecker<PointValuePair> checker) {
96 super(checker);
97 }
98
99 /**
100 * @param rel Relative threshold.
101 * @param abs Absolute threshold.
102 */
103 public SimplexOptimizer(double rel, double abs) {
104 this(new SimpleValueChecker(rel, abs));
105 }
106
107 /**
108 * {@inheritDoc}
109 *
110 * @param optData Optimization data. In addition to those documented in
111 * {@link MultivariateOptimizer#parseOptimizationData(OptimizationData[])
112 * MultivariateOptimizer}, this method will register the following data:
113 * <ul>
114 * <li>{@link AbstractSimplex}</li>
115 * </ul>
116 * @return {@inheritDoc}
117 */
118 @Override
119 public PointValuePair optimize(OptimizationData... optData) {
120 // Set up base class and perform computation.
121 return super.optimize(optData);
122 }
123
124 /** {@inheritDoc} */
125 @Override
126 protected PointValuePair doOptimize() {
127 checkParameters();
128
129 // Indirect call to "computeObjectiveValue" in order to update the
130 // evaluations counter.
131 final MultivariateFunction evalFunc
132 = new MultivariateFunction() {
133 public double value(double[] point) {
134 return computeObjectiveValue(point);
135 }
136 };
137
138 final boolean isMinim = getGoalType() == GoalType.MINIMIZE;
139 final Comparator<PointValuePair> comparator
140 = new Comparator<PointValuePair>() {
141 public int compare(final PointValuePair o1,
142 final PointValuePair o2) {
143 final double v1 = o1.getValue();
144 final double v2 = o2.getValue();
145 return isMinim ? Double.compare(v1, v2) : Double.compare(v2, v1);
146 }
147 };
148
149 // Initialize search.
150 simplex.build(getStartPoint());
151 simplex.evaluate(evalFunc, comparator);
152
153 PointValuePair[] previous = null;
154 int iteration = 0;
155 final ConvergenceChecker<PointValuePair> checker = getConvergenceChecker();
156 while (true) {
157 if (getIterations() > 0) {
158 boolean converged = true;
159 for (int i = 0; i < simplex.getSize(); i++) {
160 PointValuePair prev = previous[i];
161 converged = converged &&
162 checker.converged(iteration, prev, simplex.getPoint(i));
163 }
164 if (converged) {
165 // We have found an optimum.
166 return simplex.getPoint(0);
167 }
168 }
169
170 // We still need to search.
171 previous = simplex.getPoints();
172 simplex.iterate(evalFunc, comparator);
173
174 incrementIterationCount();
175 }
176 }
177
178 /**
179 * Scans the list of (required and optional) optimization data that
180 * characterize the problem.
181 *
182 * @param optData Optimization data.
183 * The following data will be looked for:
184 * <ul>
185 * <li>{@link AbstractSimplex}</li>
186 * </ul>
187 */
188 @Override
189 protected void parseOptimizationData(OptimizationData... optData) {
190 // Allow base class to register its own data.
191 super.parseOptimizationData(optData);
192
193 // The existing values (as set by the previous call) are reused if
194 // not provided in the argument list.
195 for (OptimizationData data : optData) {
196 if (data instanceof AbstractSimplex) {
197 simplex = (AbstractSimplex) data;
198 // If more data must be parsed, this statement _must_ be
199 // changed to "continue".
200 break;
201 }
202 }
203 }
204
205 /**
206 * @throws MathUnsupportedOperationException if bounds were passed to the
207 * {@link #optimize(OptimizationData[]) optimize} method.
208 * @throws NullArgumentException if no initial simplex was passed to the
209 * {@link #optimize(OptimizationData[]) optimize} method.
210 */
211 private void checkParameters() {
212 if (simplex == null) {
213 throw new NullArgumentException();
214 }
215 if (getLowerBound() != null ||
216 getUpperBound() != null) {
217 throw new MathUnsupportedOperationException(LocalizedFormats.CONSTRAINT);
218 }
219 }
220 }