1 /*
2 * Licensed to the Apache Software Foundation (ASF) under one or more
3 * contributor license agreements. See the NOTICE file distributed with
4 * this work for additional information regarding copyright ownership.
5 * The ASF licenses this file to You under the Apache License, Version 2.0
6 * (the "License"); you may not use this file except in compliance with
7 * the License. You may obtain a copy of the License at
8 *
9 * http://www.apache.org/licenses/LICENSE-2.0
10 *
11 * Unless required by applicable law or agreed to in writing, software
12 * distributed under the License is distributed on an "AS IS" BASIS,
13 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
14 * See the License for the specific language governing permissions and
15 * limitations under the License.
16 */
17 package org.apache.commons.math3.optim.linear;
18
19 import java.util.ArrayList;
20 import java.util.List;
21
22 import org.apache.commons.math3.exception.TooManyIterationsException;
23 import org.apache.commons.math3.optim.OptimizationData;
24 import org.apache.commons.math3.optim.PointValuePair;
25 import org.apache.commons.math3.util.FastMath;
26 import org.apache.commons.math3.util.Precision;
27
28 /**
29 * Solves a linear problem using the "Two-Phase Simplex" method.
30 * <p>
31 * The {@link SimplexSolver} supports the following {@link OptimizationData} data provided
32 * as arguments to {@link #optimize(OptimizationData...)}:
33 * <ul>
34 * <li>objective function: {@link LinearObjectiveFunction} - mandatory</li>
35 * <li>linear constraints {@link LinearConstraintSet} - mandatory</li>
36 * <li>type of optimization: {@link org.apache.commons.math3.optim.nonlinear.scalar.GoalType GoalType}
37 * - optional, default: {@link org.apache.commons.math3.optim.nonlinear.scalar.GoalType#MINIMIZE MINIMIZE}</li>
38 * <li>whether to allow negative values as solution: {@link NonNegativeConstraint} - optional, default: true</li>
39 * <li>pivot selection rule: {@link PivotSelectionRule} - optional, default {@link PivotSelectionRule#DANTZIG}</li>
40 * <li>callback for the best solution: {@link SolutionCallback} - optional</li>
41 * <li>maximum number of iterations: {@link org.apache.commons.math3.optim.MaxIter} - optional, default: {@link Integer#MAX_VALUE}</li>
42 * </ul>
43 * <p>
44 * <b>Note:</b> Depending on the problem definition, the default convergence criteria
45 * may be too strict, resulting in {@link NoFeasibleSolutionException} or
46 * {@link TooManyIterationsException}. In such a case it is advised to adjust these
47 * criteria with more appropriate values, e.g. relaxing the epsilon value.
48 * <p>
49 * Default convergence criteria:
50 * <ul>
51 * <li>Algorithm convergence: 1e-6</li>
52 * <li>Floating-point comparisons: 10 ulp</li>
53 * <li>Cut-Off value: 1e-10</li>
54 * </ul>
55 * <p>
56 * The cut-off value has been introduced to handle the case of very small pivot elements
57 * in the Simplex tableau, as these may lead to numerical instabilities and degeneracy.
58 * Potential pivot elements smaller than this value will be treated as if they were zero
59 * and are thus not considered by the pivot selection mechanism. The default value is safe
60 * for many problems, but may need to be adjusted in case of very small coefficients
61 * used in either the {@link LinearConstraint} or {@link LinearObjectiveFunction}.
62 *
63 * @since 2.0
64 */
65 public class SimplexSolver extends LinearOptimizer {
66 /** Default amount of error to accept in floating point comparisons (as ulps). */
67 static final int DEFAULT_ULPS = 10;
68
69 /** Default cut-off value. */
70 static final double DEFAULT_CUT_OFF = 1e-10;
71
72 /** Default amount of error to accept for algorithm convergence. */
73 private static final double DEFAULT_EPSILON = 1.0e-6;
74
75 /** Amount of error to accept for algorithm convergence. */
76 private final double epsilon;
77
78 /** Amount of error to accept in floating point comparisons (as ulps). */
79 private final int maxUlps;
80
81 /**
82 * Cut-off value for entries in the tableau: values smaller than the cut-off
83 * are treated as zero to improve numerical stability.
84 */
85 private final double cutOff;
86
87 /** The pivot selection method to use. */
88 private PivotSelectionRule pivotSelection;
89
90 /**
91 * The solution callback to access the best solution found so far in case
92 * the optimizer fails to find an optimal solution within the iteration limits.
93 */
94 private SolutionCallback solutionCallback;
95
96 /**
97 * Builds a simplex solver with default settings.
98 */
99 public SimplexSolver() {
100 this(DEFAULT_EPSILON, DEFAULT_ULPS, DEFAULT_CUT_OFF);
101 }
102
103 /**
104 * Builds a simplex solver with a specified accepted amount of error.
105 *
106 * @param epsilon Amount of error to accept for algorithm convergence.
107 */
108 public SimplexSolver(final double epsilon) {
109 this(epsilon, DEFAULT_ULPS, DEFAULT_CUT_OFF);
110 }
111
112 /**
113 * Builds a simplex solver with a specified accepted amount of error.
114 *
115 * @param epsilon Amount of error to accept for algorithm convergence.
116 * @param maxUlps Amount of error to accept in floating point comparisons.
117 */
118 public SimplexSolver(final double epsilon, final int maxUlps) {
119 this(epsilon, maxUlps, DEFAULT_CUT_OFF);
120 }
121
122 /**
123 * Builds a simplex solver with a specified accepted amount of error.
124 *
125 * @param epsilon Amount of error to accept for algorithm convergence.
126 * @param maxUlps Amount of error to accept in floating point comparisons.
127 * @param cutOff Values smaller than the cutOff are treated as zero.
128 */
129 public SimplexSolver(final double epsilon, final int maxUlps, final double cutOff) {
130 this.epsilon = epsilon;
131 this.maxUlps = maxUlps;
132 this.cutOff = cutOff;
133 this.pivotSelection = PivotSelectionRule.DANTZIG;
134 }
135
136 /**
137 * {@inheritDoc}
138 *
139 * @param optData Optimization data. In addition to those documented in
140 * {@link LinearOptimizer#optimize(OptimizationData...)
141 * LinearOptimizer}, this method will register the following data:
142 * <ul>
143 * <li>{@link SolutionCallback}</li>
144 * <li>{@link PivotSelectionRule}</li>
145 * </ul>
146 *
147 * @return {@inheritDoc}
148 * @throws TooManyIterationsException if the maximal number of iterations is exceeded.
149 */
150 @Override
151 public PointValuePair optimize(OptimizationData... optData)
152 throws TooManyIterationsException {
153 // Set up base class and perform computation.
154 return super.optimize(optData);
155 }
156
157 /**
158 * {@inheritDoc}
159 *
160 * @param optData Optimization data.
161 * In addition to those documented in
162 * {@link LinearOptimizer#parseOptimizationData(OptimizationData[])
163 * LinearOptimizer}, this method will register the following data:
164 * <ul>
165 * <li>{@link SolutionCallback}</li>
166 * <li>{@link PivotSelectionRule}</li>
167 * </ul>
168 */
169 @Override
170 protected void parseOptimizationData(OptimizationData... optData) {
171 // Allow base class to register its own data.
172 super.parseOptimizationData(optData);
173
174 // reset the callback before parsing
175 solutionCallback = null;
176
177 for (OptimizationData data : optData) {
178 if (data instanceof SolutionCallback) {
179 solutionCallback = (SolutionCallback) data;
180 continue;
181 }
182 if (data instanceof PivotSelectionRule) {
183 pivotSelection = (PivotSelectionRule) data;
184 continue;
185 }
186 }
187 }
188
189 /**
190 * Returns the column with the most negative coefficient in the objective function row.
191 *
192 * @param tableau Simple tableau for the problem.
193 * @return the column with the most negative coefficient.
194 */
195 private Integer getPivotColumn(SimplexTableau tableau) {
196 double minValue = 0;
197 Integer minPos = null;
198 for (int i = tableau.getNumObjectiveFunctions(); i < tableau.getWidth() - 1; i++) {
199 final double entry = tableau.getEntry(0, i);
200 // check if the entry is strictly smaller than the current minimum
201 // do not use a ulp/epsilon check
202 if (entry < minValue) {
203 minValue = entry;
204 minPos = i;
205
206 // Bland's rule: chose the entering column with the lowest index
207 if (pivotSelection == PivotSelectionRule.BLAND && isValidPivotColumn(tableau, i)) {
208 break;
209 }
210 }
211 }
212 return minPos;
213 }
214
215 /**
216 * Checks whether the given column is valid pivot column, i.e. will result
217 * in a valid pivot row.
218 * <p>
219 * When applying Bland's rule to select the pivot column, it may happen that
220 * there is no corresponding pivot row. This method will check if the selected
221 * pivot column will return a valid pivot row.
222 *
223 * @param tableau simplex tableau for the problem
224 * @param col the column to test
225 * @return {@code true} if the pivot column is valid, {@code false} otherwise
226 */
227 private boolean isValidPivotColumn(SimplexTableau tableau, int col) {
228 for (int i = tableau.getNumObjectiveFunctions(); i < tableau.getHeight(); i++) {
229 final double entry = tableau.getEntry(i, col);
230
231 // do the same check as in getPivotRow
232 if (Precision.compareTo(entry, 0d, cutOff) > 0) {
233 return true;
234 }
235 }
236 return false;
237 }
238
239 /**
240 * Returns the row with the minimum ratio as given by the minimum ratio test (MRT).
241 *
242 * @param tableau Simplex tableau for the problem.
243 * @param col Column to test the ratio of (see {@link #getPivotColumn(SimplexTableau)}).
244 * @return the row with the minimum ratio.
245 */
246 private Integer getPivotRow(SimplexTableau tableau, final int col) {
247 // create a list of all the rows that tie for the lowest score in the minimum ratio test
248 List<Integer> minRatioPositions = new ArrayList<Integer>();
249 double minRatio = Double.MAX_VALUE;
250 for (int i = tableau.getNumObjectiveFunctions(); i < tableau.getHeight(); i++) {
251 final double rhs = tableau.getEntry(i, tableau.getWidth() - 1);
252 final double entry = tableau.getEntry(i, col);
253
254 // only consider pivot elements larger than the cutOff threshold
255 // selecting others may lead to degeneracy or numerical instabilities
256 if (Precision.compareTo(entry, 0d, cutOff) > 0) {
257 final double ratio = FastMath.abs(rhs / entry);
258 // check if the entry is strictly equal to the current min ratio
259 // do not use a ulp/epsilon check
260 final int cmp = Double.compare(ratio, minRatio);
261 if (cmp == 0) {
262 minRatioPositions.add(i);
263 } else if (cmp < 0) {
264 minRatio = ratio;
265 minRatioPositions.clear();
266 minRatioPositions.add(i);
267 }
268 }
269 }
270
271 if (minRatioPositions.size() == 0) {
272 return null;
273 } else if (minRatioPositions.size() > 1) {
274 // there's a degeneracy as indicated by a tie in the minimum ratio test
275
276 // 1. check if there's an artificial variable that can be forced out of the basis
277 if (tableau.getNumArtificialVariables() > 0) {
278 for (Integer row : minRatioPositions) {
279 for (int i = 0; i < tableau.getNumArtificialVariables(); i++) {
280 int column = i + tableau.getArtificialVariableOffset();
281 final double entry = tableau.getEntry(row, column);
282 if (Precision.equals(entry, 1d, maxUlps) && row.equals(tableau.getBasicRow(column))) {
283 return row;
284 }
285 }
286 }
287 }
288
289 // 2. apply Bland's rule to prevent cycling:
290 // take the row for which the corresponding basic variable has the smallest index
291 //
292 // see http://www.stanford.edu/class/msande310/blandrule.pdf
293 // see http://en.wikipedia.org/wiki/Bland%27s_rule (not equivalent to the above paper)
294
295 Integer minRow = null;
296 int minIndex = tableau.getWidth();
297 for (Integer row : minRatioPositions) {
298 final int basicVar = tableau.getBasicVariable(row);
299 if (basicVar < minIndex) {
300 minIndex = basicVar;
301 minRow = row;
302 }
303 }
304 return minRow;
305 }
306 return minRatioPositions.get(0);
307 }
308
309 /**
310 * Runs one iteration of the Simplex method on the given model.
311 *
312 * @param tableau Simple tableau for the problem.
313 * @throws TooManyIterationsException if the allowed number of iterations has been exhausted.
314 * @throws UnboundedSolutionException if the model is found not to have a bounded solution.
315 */
316 protected void doIteration(final SimplexTableau tableau)
317 throws TooManyIterationsException,
318 UnboundedSolutionException {
319
320 incrementIterationCount();
321
322 Integer pivotCol = getPivotColumn(tableau);
323 Integer pivotRow = getPivotRow(tableau, pivotCol);
324 if (pivotRow == null) {
325 throw new UnboundedSolutionException();
326 }
327
328 tableau.performRowOperations(pivotCol, pivotRow);
329 }
330
331 /**
332 * Solves Phase 1 of the Simplex method.
333 *
334 * @param tableau Simple tableau for the problem.
335 * @throws TooManyIterationsException if the allowed number of iterations has been exhausted.
336 * @throws UnboundedSolutionException if the model is found not to have a bounded solution.
337 * @throws NoFeasibleSolutionException if there is no feasible solution?
338 */
339 protected void solvePhase1(final SimplexTableau tableau)
340 throws TooManyIterationsException,
341 UnboundedSolutionException,
342 NoFeasibleSolutionException {
343
344 // make sure we're in Phase 1
345 if (tableau.getNumArtificialVariables() == 0) {
346 return;
347 }
348
349 while (!tableau.isOptimal()) {
350 doIteration(tableau);
351 }
352
353 // if W is not zero then we have no feasible solution
354 if (!Precision.equals(tableau.getEntry(0, tableau.getRhsOffset()), 0d, epsilon)) {
355 throw new NoFeasibleSolutionException();
356 }
357 }
358
359 /** {@inheritDoc} */
360 @Override
361 public PointValuePair doOptimize()
362 throws TooManyIterationsException,
363 UnboundedSolutionException,
364 NoFeasibleSolutionException {
365
366 // reset the tableau to indicate a non-feasible solution in case
367 // we do not pass phase 1 successfully
368 if (solutionCallback != null) {
369 solutionCallback.setTableau(null);
370 }
371
372 final SimplexTableau tableau =
373 new SimplexTableau(getFunction(),
374 getConstraints(),
375 getGoalType(),
376 isRestrictedToNonNegative(),
377 epsilon,
378 maxUlps);
379
380 solvePhase1(tableau);
381 tableau.dropPhase1Objective();
382
383 // after phase 1, we are sure to have a feasible solution
384 if (solutionCallback != null) {
385 solutionCallback.setTableau(tableau);
386 }
387
388 while (!tableau.isOptimal()) {
389 doIteration(tableau);
390 }
391
392 // check that the solution respects the nonNegative restriction in case
393 // the epsilon/cutOff values are too large for the actual linear problem
394 // (e.g. with very small constraint coefficients), the solver might actually
395 // find a non-valid solution (with negative coefficients).
396 final PointValuePair solution = tableau.getSolution();
397 if (isRestrictedToNonNegative()) {
398 final double[] coeff = solution.getPoint();
399 for (int i = 0; i < coeff.length; i++) {
400 if (Precision.compareTo(coeff[i], 0, epsilon) < 0) {
401 throw new NoFeasibleSolutionException();
402 }
403 }
404 }
405 return solution;
406 }
407 }