.. _sphx_glr_auto_examples_manifold_plot_lle_digits.py:


=============================================================================
Manifold learning on handwritten digits: Locally Linear Embedding, Isomap...
=============================================================================

An illustration of various embeddings on the digits dataset.

The RandomTreesEmbedding, from the :mod:`sklearn.ensemble` module, is not
technically a manifold embedding method, as it learn a high-dimensional
representation on which we apply a dimensionality reduction method.
However, it is often useful to cast a dataset into a representation in
which the classes are linearly-separable.

t-SNE will be initialized with the embedding that is generated by PCA in
this example, which is not the default setting. It ensures global stability
of the embedding, i.e., the embedding does not depend on random
initialization.



.. rst-class:: sphx-glr-horizontal


    *

      .. image:: /auto_examples/manifold/images/sphx_glr_plot_lle_digits_001.png
            :scale: 47

    *

      .. image:: /auto_examples/manifold/images/sphx_glr_plot_lle_digits_002.png
            :scale: 47

    *

      .. image:: /auto_examples/manifold/images/sphx_glr_plot_lle_digits_003.png
            :scale: 47

    *

      .. image:: /auto_examples/manifold/images/sphx_glr_plot_lle_digits_004.png
            :scale: 47

    *

      .. image:: /auto_examples/manifold/images/sphx_glr_plot_lle_digits_005.png
            :scale: 47

    *

      .. image:: /auto_examples/manifold/images/sphx_glr_plot_lle_digits_006.png
            :scale: 47

    *

      .. image:: /auto_examples/manifold/images/sphx_glr_plot_lle_digits_007.png
            :scale: 47

    *

      .. image:: /auto_examples/manifold/images/sphx_glr_plot_lle_digits_008.png
            :scale: 47

    *

      .. image:: /auto_examples/manifold/images/sphx_glr_plot_lle_digits_009.png
            :scale: 47

    *

      .. image:: /auto_examples/manifold/images/sphx_glr_plot_lle_digits_010.png
            :scale: 47

    *

      .. image:: /auto_examples/manifold/images/sphx_glr_plot_lle_digits_011.png
            :scale: 47

    *

      .. image:: /auto_examples/manifold/images/sphx_glr_plot_lle_digits_012.png
            :scale: 47

    *

      .. image:: /auto_examples/manifold/images/sphx_glr_plot_lle_digits_013.png
            :scale: 47


.. rst-class:: sphx-glr-script-out

 Out::

      Computing random projection
    Computing PCA projection
    Computing Linear Discriminant Analysis projection
    Computing Isomap embedding
    Done.
    Computing LLE embedding
    Done. Reconstruction error: 1.63544e-06
    Computing modified LLE embedding
    Done. Reconstruction error: 0.360423
    Computing Hessian LLE embedding
    Done. Reconstruction error: 0.212806
    Computing LTSA embedding
    Done. Reconstruction error: 0.2128
    Computing MDS embedding
    Done. Stress: 150446492.243191
    Computing Totally Random Trees embedding
    Computing Spectral embedding
    Computing t-SNE embedding




|


.. code-block:: python


    # Authors: Fabian Pedregosa <fabian.pedregosa@inria.fr>
    #          Olivier Grisel <olivier.grisel@ensta.org>
    #          Mathieu Blondel <mathieu@mblondel.org>
    #          Gael Varoquaux
    # License: BSD 3 clause (C) INRIA 2011

    print(__doc__)
    from time import time

    import numpy as np
    import matplotlib.pyplot as plt
    from matplotlib import offsetbox
    from sklearn import (manifold, datasets, decomposition, ensemble,
                         discriminant_analysis, random_projection)

    digits = datasets.load_digits(n_class=6)
    X = digits.data
    y = digits.target
    n_samples, n_features = X.shape
    n_neighbors = 30


    #----------------------------------------------------------------------
    # Scale and visualize the embedding vectors
    def plot_embedding(X, title=None):
        x_min, x_max = np.min(X, 0), np.max(X, 0)
        X = (X - x_min) / (x_max - x_min)

        plt.figure()
        ax = plt.subplot(111)
        for i in range(X.shape[0]):
            plt.text(X[i, 0], X[i, 1], str(digits.target[i]),
                     color=plt.cm.Set1(y[i] / 10.),
                     fontdict={'weight': 'bold', 'size': 9})

        if hasattr(offsetbox, 'AnnotationBbox'):
            # only print thumbnails with matplotlib > 1.0
            shown_images = np.array([[1., 1.]])  # just something big
            for i in range(digits.data.shape[0]):
                dist = np.sum((X[i] - shown_images) ** 2, 1)
                if np.min(dist) < 4e-3:
                    # don't show points that are too close
                    continue
                shown_images = np.r_[shown_images, [X[i]]]
                imagebox = offsetbox.AnnotationBbox(
                    offsetbox.OffsetImage(digits.images[i], cmap=plt.cm.gray_r),
                    X[i])
                ax.add_artist(imagebox)
        plt.xticks([]), plt.yticks([])
        if title is not None:
            plt.title(title)


    #----------------------------------------------------------------------
    # Plot images of the digits
    n_img_per_row = 20
    img = np.zeros((10 * n_img_per_row, 10 * n_img_per_row))
    for i in range(n_img_per_row):
        ix = 10 * i + 1
        for j in range(n_img_per_row):
            iy = 10 * j + 1
            img[ix:ix + 8, iy:iy + 8] = X[i * n_img_per_row + j].reshape((8, 8))

    plt.imshow(img, cmap=plt.cm.binary)
    plt.xticks([])
    plt.yticks([])
    plt.title('A selection from the 64-dimensional digits dataset')


    #----------------------------------------------------------------------
    # Random 2D projection using a random unitary matrix
    print("Computing random projection")
    rp = random_projection.SparseRandomProjection(n_components=2, random_state=42)
    X_projected = rp.fit_transform(X)
    plot_embedding(X_projected, "Random Projection of the digits")


    #----------------------------------------------------------------------
    # Projection on to the first 2 principal components

    print("Computing PCA projection")
    t0 = time()
    X_pca = decomposition.TruncatedSVD(n_components=2).fit_transform(X)
    plot_embedding(X_pca,
                   "Principal Components projection of the digits (time %.2fs)" %
                   (time() - t0))

    #----------------------------------------------------------------------
    # Projection on to the first 2 linear discriminant components

    print("Computing Linear Discriminant Analysis projection")
    X2 = X.copy()
    X2.flat[::X.shape[1] + 1] += 0.01  # Make X invertible
    t0 = time()
    X_lda = discriminant_analysis.LinearDiscriminantAnalysis(n_components=2).fit_transform(X2, y)
    plot_embedding(X_lda,
                   "Linear Discriminant projection of the digits (time %.2fs)" %
                   (time() - t0))


    #----------------------------------------------------------------------
    # Isomap projection of the digits dataset
    print("Computing Isomap embedding")
    t0 = time()
    X_iso = manifold.Isomap(n_neighbors, n_components=2).fit_transform(X)
    print("Done.")
    plot_embedding(X_iso,
                   "Isomap projection of the digits (time %.2fs)" %
                   (time() - t0))


    #----------------------------------------------------------------------
    # Locally linear embedding of the digits dataset
    print("Computing LLE embedding")
    clf = manifold.LocallyLinearEmbedding(n_neighbors, n_components=2,
                                          method='standard')
    t0 = time()
    X_lle = clf.fit_transform(X)
    print("Done. Reconstruction error: %g" % clf.reconstruction_error_)
    plot_embedding(X_lle,
                   "Locally Linear Embedding of the digits (time %.2fs)" %
                   (time() - t0))


    #----------------------------------------------------------------------
    # Modified Locally linear embedding of the digits dataset
    print("Computing modified LLE embedding")
    clf = manifold.LocallyLinearEmbedding(n_neighbors, n_components=2,
                                          method='modified')
    t0 = time()
    X_mlle = clf.fit_transform(X)
    print("Done. Reconstruction error: %g" % clf.reconstruction_error_)
    plot_embedding(X_mlle,
                   "Modified Locally Linear Embedding of the digits (time %.2fs)" %
                   (time() - t0))


    #----------------------------------------------------------------------
    # HLLE embedding of the digits dataset
    print("Computing Hessian LLE embedding")
    clf = manifold.LocallyLinearEmbedding(n_neighbors, n_components=2,
                                          method='hessian')
    t0 = time()
    X_hlle = clf.fit_transform(X)
    print("Done. Reconstruction error: %g" % clf.reconstruction_error_)
    plot_embedding(X_hlle,
                   "Hessian Locally Linear Embedding of the digits (time %.2fs)" %
                   (time() - t0))


    #----------------------------------------------------------------------
    # LTSA embedding of the digits dataset
    print("Computing LTSA embedding")
    clf = manifold.LocallyLinearEmbedding(n_neighbors, n_components=2,
                                          method='ltsa')
    t0 = time()
    X_ltsa = clf.fit_transform(X)
    print("Done. Reconstruction error: %g" % clf.reconstruction_error_)
    plot_embedding(X_ltsa,
                   "Local Tangent Space Alignment of the digits (time %.2fs)" %
                   (time() - t0))

    #----------------------------------------------------------------------
    # MDS  embedding of the digits dataset
    print("Computing MDS embedding")
    clf = manifold.MDS(n_components=2, n_init=1, max_iter=100)
    t0 = time()
    X_mds = clf.fit_transform(X)
    print("Done. Stress: %f" % clf.stress_)
    plot_embedding(X_mds,
                   "MDS embedding of the digits (time %.2fs)" %
                   (time() - t0))

    #----------------------------------------------------------------------
    # Random Trees embedding of the digits dataset
    print("Computing Totally Random Trees embedding")
    hasher = ensemble.RandomTreesEmbedding(n_estimators=200, random_state=0,
                                           max_depth=5)
    t0 = time()
    X_transformed = hasher.fit_transform(X)
    pca = decomposition.TruncatedSVD(n_components=2)
    X_reduced = pca.fit_transform(X_transformed)

    plot_embedding(X_reduced,
                   "Random forest embedding of the digits (time %.2fs)" %
                   (time() - t0))

    #----------------------------------------------------------------------
    # Spectral embedding of the digits dataset
    print("Computing Spectral embedding")
    embedder = manifold.SpectralEmbedding(n_components=2, random_state=0,
                                          eigen_solver="arpack")
    t0 = time()
    X_se = embedder.fit_transform(X)

    plot_embedding(X_se,
                   "Spectral embedding of the digits (time %.2fs)" %
                   (time() - t0))

    #----------------------------------------------------------------------
    # t-SNE embedding of the digits dataset
    print("Computing t-SNE embedding")
    tsne = manifold.TSNE(n_components=2, init='pca', random_state=0)
    t0 = time()
    X_tsne = tsne.fit_transform(X)

    plot_embedding(X_tsne,
                   "t-SNE embedding of the digits (time %.2fs)" %
                   (time() - t0))

    plt.show()

**Total running time of the script:**
(0 minutes 25.185 seconds)



.. container:: sphx-glr-download

    **Download Python source code:** :download:`plot_lle_digits.py <plot_lle_digits.py>`


.. container:: sphx-glr-download

    **Download IPython notebook:** :download:`plot_lle_digits.ipynb <plot_lle_digits.ipynb>`