.. _sphx_glr_auto_examples_calibration_plot_calibration_multiclass.py:


==================================================
Probability Calibration for 3-class classification
==================================================

This example illustrates how sigmoid calibration changes predicted
probabilities for a 3-class classification problem. Illustrated is the
standard 2-simplex, where the three corners correspond to the three classes.
Arrows point from the probability vectors predicted by an uncalibrated
classifier to the probability vectors predicted by the same classifier after
sigmoid calibration on a hold-out validation set. Colors indicate the true
class of an instance (red: class 1, green: class 2, blue: class 3).

The base classifier is a random forest classifier with 25 base estimators
(trees). If this classifier is trained on all 800 training datapoints, it is
overly confident in its predictions and thus incurs a large log-loss.
Calibrating an identical classifier, which was trained on 600 datapoints, with
method='sigmoid' on the remaining 200 datapoints reduces the confidence of the
predictions, i.e., moves the probability vectors from the edges of the simplex
towards the center. This calibration results in a lower log-loss. Note that an
alternative would have been to increase the number of base estimators which
would have resulted in a similar decrease in log-loss.



.. rst-class:: sphx-glr-horizontal


    *

      .. image:: /auto_examples/calibration/images/sphx_glr_plot_calibration_multiclass_000.png
            :scale: 47

    *

      .. image:: /auto_examples/calibration/images/sphx_glr_plot_calibration_multiclass_001.png
            :scale: 47


.. rst-class:: sphx-glr-script-out

 Out::

      Log-loss of
     * uncalibrated classifier trained on 800 datapoints: 1.280 
     * classifier trained on 600 datapoints and calibrated on 200 datapoint: 0.534




|


.. code-block:: python

    print(__doc__)

    # Author: Jan Hendrik Metzen <jhm@informatik.uni-bremen.de>
    # License: BSD Style.


    import matplotlib.pyplot as plt

    import numpy as np

    from sklearn.datasets import make_blobs
    from sklearn.ensemble import RandomForestClassifier
    from sklearn.calibration import CalibratedClassifierCV
    from sklearn.metrics import log_loss

    np.random.seed(0)

    # Generate data
    X, y = make_blobs(n_samples=1000, n_features=2, random_state=42,
                      cluster_std=5.0)
    X_train, y_train = X[:600], y[:600]
    X_valid, y_valid = X[600:800], y[600:800]
    X_train_valid, y_train_valid = X[:800], y[:800]
    X_test, y_test = X[800:], y[800:]

    # Train uncalibrated random forest classifier on whole train and validation
    # data and evaluate on test data
    clf = RandomForestClassifier(n_estimators=25)
    clf.fit(X_train_valid, y_train_valid)
    clf_probs = clf.predict_proba(X_test)
    score = log_loss(y_test, clf_probs)

    # Train random forest classifier, calibrate on validation data and evaluate
    # on test data
    clf = RandomForestClassifier(n_estimators=25)
    clf.fit(X_train, y_train)
    clf_probs = clf.predict_proba(X_test)
    sig_clf = CalibratedClassifierCV(clf, method="sigmoid", cv="prefit")
    sig_clf.fit(X_valid, y_valid)
    sig_clf_probs = sig_clf.predict_proba(X_test)
    sig_score = log_loss(y_test, sig_clf_probs)

    # Plot changes in predicted probabilities via arrows
    plt.figure(0)
    colors = ["r", "g", "b"]
    for i in range(clf_probs.shape[0]):
        plt.arrow(clf_probs[i, 0], clf_probs[i, 1],
                  sig_clf_probs[i, 0] - clf_probs[i, 0],
                  sig_clf_probs[i, 1] - clf_probs[i, 1],
                  color=colors[y_test[i]], head_width=1e-2)

    # Plot perfect predictions
    plt.plot([1.0], [0.0], 'ro', ms=20, label="Class 1")
    plt.plot([0.0], [1.0], 'go', ms=20, label="Class 2")
    plt.plot([0.0], [0.0], 'bo', ms=20, label="Class 3")

    # Plot boundaries of unit simplex
    plt.plot([0.0, 1.0, 0.0, 0.0], [0.0, 0.0, 1.0, 0.0], 'k', label="Simplex")

    # Annotate points on the simplex
    plt.annotate(r'($\frac{1}{3}$, $\frac{1}{3}$, $\frac{1}{3}$)',
                 xy=(1.0/3, 1.0/3), xytext=(1.0/3, .23), xycoords='data',
                 arrowprops=dict(facecolor='black', shrink=0.05),
                 horizontalalignment='center', verticalalignment='center')
    plt.plot([1.0/3], [1.0/3], 'ko', ms=5)
    plt.annotate(r'($\frac{1}{2}$, $0$, $\frac{1}{2}$)',
                 xy=(.5, .0), xytext=(.5, .1), xycoords='data',
                 arrowprops=dict(facecolor='black', shrink=0.05),
                 horizontalalignment='center', verticalalignment='center')
    plt.annotate(r'($0$, $\frac{1}{2}$, $\frac{1}{2}$)',
                 xy=(.0, .5), xytext=(.1, .5), xycoords='data',
                 arrowprops=dict(facecolor='black', shrink=0.05),
                 horizontalalignment='center', verticalalignment='center')
    plt.annotate(r'($\frac{1}{2}$, $\frac{1}{2}$, $0$)',
                 xy=(.5, .5), xytext=(.6, .6), xycoords='data',
                 arrowprops=dict(facecolor='black', shrink=0.05),
                 horizontalalignment='center', verticalalignment='center')
    plt.annotate(r'($0$, $0$, $1$)',
                 xy=(0, 0), xytext=(.1, .1), xycoords='data',
                 arrowprops=dict(facecolor='black', shrink=0.05),
                 horizontalalignment='center', verticalalignment='center')
    plt.annotate(r'($1$, $0$, $0$)',
                 xy=(1, 0), xytext=(1, .1), xycoords='data',
                 arrowprops=dict(facecolor='black', shrink=0.05),
                 horizontalalignment='center', verticalalignment='center')
    plt.annotate(r'($0$, $1$, $0$)',
                 xy=(0, 1), xytext=(.1, 1), xycoords='data',
                 arrowprops=dict(facecolor='black', shrink=0.05),
                 horizontalalignment='center', verticalalignment='center')
    # Add grid
    plt.grid("off")
    for x in [0.0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0]:
        plt.plot([0, x], [x, 0], 'k', alpha=0.2)
        plt.plot([0, 0 + (1-x)/2], [x, x + (1-x)/2], 'k', alpha=0.2)
        plt.plot([x, x + (1-x)/2], [0, 0 + (1-x)/2], 'k', alpha=0.2)

    plt.title("Change of predicted probabilities after sigmoid calibration")
    plt.xlabel("Probability class 1")
    plt.ylabel("Probability class 2")
    plt.xlim(-0.05, 1.05)
    plt.ylim(-0.05, 1.05)
    plt.legend(loc="best")

    print("Log-loss of")
    print(" * uncalibrated classifier trained on 800 datapoints: %.3f "
          % score)
    print(" * classifier trained on 600 datapoints and calibrated on "
          "200 datapoint: %.3f" % sig_score)

    # Illustrate calibrator
    plt.figure(1)
    # generate grid over 2-simplex
    p1d = np.linspace(0, 1, 20)
    p0, p1 = np.meshgrid(p1d, p1d)
    p2 = 1 - p0 - p1
    p = np.c_[p0.ravel(), p1.ravel(), p2.ravel()]
    p = p[p[:, 2] >= 0]

    calibrated_classifier = sig_clf.calibrated_classifiers_[0]
    prediction = np.vstack([calibrator.predict(this_p)
                            for calibrator, this_p in
                            zip(calibrated_classifier.calibrators_, p.T)]).T
    prediction /= prediction.sum(axis=1)[:, None]

    # Plot modifications of calibrator
    for i in range(prediction.shape[0]):
        plt.arrow(p[i, 0], p[i, 1],
                  prediction[i, 0] - p[i, 0], prediction[i, 1] - p[i, 1],
                  head_width=1e-2, color=colors[np.argmax(p[i])])
    # Plot boundaries of unit simplex
    plt.plot([0.0, 1.0, 0.0, 0.0], [0.0, 0.0, 1.0, 0.0], 'k', label="Simplex")

    plt.grid("off")
    for x in [0.0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0]:
        plt.plot([0, x], [x, 0], 'k', alpha=0.2)
        plt.plot([0, 0 + (1-x)/2], [x, x + (1-x)/2], 'k', alpha=0.2)
        plt.plot([x, x + (1-x)/2], [0, 0 + (1-x)/2], 'k', alpha=0.2)

    plt.title("Illustration of sigmoid calibrator")
    plt.xlabel("Probability class 1")
    plt.ylabel("Probability class 2")
    plt.xlim(-0.05, 1.05)
    plt.ylim(-0.05, 1.05)

    plt.show()

**Total running time of the script:**
(0 minutes 0.655 seconds)



.. container:: sphx-glr-download

    **Download Python source code:** :download:`plot_calibration_multiclass.py <plot_calibration_multiclass.py>`


.. container:: sphx-glr-download

    **Download IPython notebook:** :download:`plot_calibration_multiclass.ipynb <plot_calibration_multiclass.ipynb>`