.. _sphx_glr_auto_examples_calibration_plot_calibration_curve.py:


==============================
Probability Calibration curves
==============================

When performing classification one often wants to predict not only the class
label, but also the associated probability. This probability gives some
kind of confidence on the prediction. This example demonstrates how to display
how well calibrated the predicted probabilities are and how to calibrate an
uncalibrated classifier.

The experiment is performed on an artificial dataset for binary classification
with 100.000 samples (1.000 of them are used for model fitting) with 20
features. Of the 20 features, only 2 are informative and 10 are redundant. The
first figure shows the estimated probabilities obtained with logistic
regression, Gaussian naive Bayes, and Gaussian naive Bayes with both isotonic
calibration and sigmoid calibration. The calibration performance is evaluated
with Brier score, reported in the legend (the smaller the better). One can
observe here that logistic regression is well calibrated while raw Gaussian
naive Bayes performs very badly. This is because of the redundant features
which violate the assumption of feature-independence and result in an overly
confident classifier, which is indicated by the typical transposed-sigmoid
curve.

Calibration of the probabilities of Gaussian naive Bayes with isotonic
regression can fix this issue as can be seen from the nearly diagonal
calibration curve. Sigmoid calibration also improves the brier score slightly,
albeit not as strongly as the non-parametric isotonic regression. This can be
attributed to the fact that we have plenty of calibration data such that the
greater flexibility of the non-parametric model can be exploited.

The second figure shows the calibration curve of a linear support-vector
classifier (LinearSVC). LinearSVC shows the opposite behavior as Gaussian
naive Bayes: the calibration curve has a sigmoid curve, which is typical for
an under-confident classifier. In the case of LinearSVC, this is caused by the
margin property of the hinge loss, which lets the model focus on hard samples
that are close to the decision boundary (the support vectors).

Both kinds of calibration can fix this issue and yield nearly identical
results. This shows that sigmoid calibration can deal with situations where
the calibration curve of the base classifier is sigmoid (e.g., for LinearSVC)
but not where it is transposed-sigmoid (e.g., Gaussian naive Bayes).



.. rst-class:: sphx-glr-horizontal


    *

      .. image:: /auto_examples/calibration/images/sphx_glr_plot_calibration_curve_001.png
            :scale: 47

    *

      .. image:: /auto_examples/calibration/images/sphx_glr_plot_calibration_curve_002.png
            :scale: 47


.. rst-class:: sphx-glr-script-out

 Out::

      Logistic:
            Brier: 0.099
            Precision: 0.872
            Recall: 0.851
            F1: 0.862

    Naive Bayes:
            Brier: 0.118
            Precision: 0.857
            Recall: 0.876
            F1: 0.867

    Naive Bayes + Isotonic:
            Brier: 0.098
            Precision: 0.883
            Recall: 0.836
            F1: 0.859

    Naive Bayes + Sigmoid:
            Brier: 0.109
            Precision: 0.861
            Recall: 0.871
            F1: 0.866

    Logistic:
            Brier: 0.099
            Precision: 0.872
            Recall: 0.851
            F1: 0.862

    SVC:
            Brier: 0.163
            Precision: 0.872
            Recall: 0.852
            F1: 0.862

    SVC + Isotonic:
            Brier: 0.100
            Precision: 0.853
            Recall: 0.878
            F1: 0.865

    SVC + Sigmoid:
            Brier: 0.099
            Precision: 0.874
            Recall: 0.849
            F1: 0.861




|


.. code-block:: python

    print(__doc__)

    # Author: Alexandre Gramfort <alexandre.gramfort@telecom-paristech.fr>
    #         Jan Hendrik Metzen <jhm@informatik.uni-bremen.de>
    # License: BSD Style.

    import matplotlib.pyplot as plt

    from sklearn import datasets
    from sklearn.naive_bayes import GaussianNB
    from sklearn.svm import LinearSVC
    from sklearn.linear_model import LogisticRegression
    from sklearn.metrics import (brier_score_loss, precision_score, recall_score,
                                 f1_score)
    from sklearn.calibration import CalibratedClassifierCV, calibration_curve
    from sklearn.model_selection import train_test_split


    # Create dataset of classification task with many redundant and few
    # informative features
    X, y = datasets.make_classification(n_samples=100000, n_features=20,
                                        n_informative=2, n_redundant=10,
                                        random_state=42)

    X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.99,
                                                        random_state=42)


    def plot_calibration_curve(est, name, fig_index):
        """Plot calibration curve for est w/o and with calibration. """
        # Calibrated with isotonic calibration
        isotonic = CalibratedClassifierCV(est, cv=2, method='isotonic')

        # Calibrated with sigmoid calibration
        sigmoid = CalibratedClassifierCV(est, cv=2, method='sigmoid')

        # Logistic regression with no calibration as baseline
        lr = LogisticRegression(C=1., solver='lbfgs')

        fig = plt.figure(fig_index, figsize=(10, 10))
        ax1 = plt.subplot2grid((3, 1), (0, 0), rowspan=2)
        ax2 = plt.subplot2grid((3, 1), (2, 0))

        ax1.plot([0, 1], [0, 1], "k:", label="Perfectly calibrated")
        for clf, name in [(lr, 'Logistic'),
                          (est, name),
                          (isotonic, name + ' + Isotonic'),
                          (sigmoid, name + ' + Sigmoid')]:
            clf.fit(X_train, y_train)
            y_pred = clf.predict(X_test)
            if hasattr(clf, "predict_proba"):
                prob_pos = clf.predict_proba(X_test)[:, 1]
            else:  # use decision function
                prob_pos = clf.decision_function(X_test)
                prob_pos = \
                    (prob_pos - prob_pos.min()) / (prob_pos.max() - prob_pos.min())

            clf_score = brier_score_loss(y_test, prob_pos, pos_label=y.max())
            print("%s:" % name)
            print("\tBrier: %1.3f" % (clf_score))
            print("\tPrecision: %1.3f" % precision_score(y_test, y_pred))
            print("\tRecall: %1.3f" % recall_score(y_test, y_pred))
            print("\tF1: %1.3f\n" % f1_score(y_test, y_pred))

            fraction_of_positives, mean_predicted_value = \
                calibration_curve(y_test, prob_pos, n_bins=10)

            ax1.plot(mean_predicted_value, fraction_of_positives, "s-",
                     label="%s (%1.3f)" % (name, clf_score))

            ax2.hist(prob_pos, range=(0, 1), bins=10, label=name,
                     histtype="step", lw=2)

        ax1.set_ylabel("Fraction of positives")
        ax1.set_ylim([-0.05, 1.05])
        ax1.legend(loc="lower right")
        ax1.set_title('Calibration plots  (reliability curve)')

        ax2.set_xlabel("Mean predicted value")
        ax2.set_ylabel("Count")
        ax2.legend(loc="upper center", ncol=2)

        plt.tight_layout()

    # Plot calibration curve for Gaussian Naive Bayes
    plot_calibration_curve(GaussianNB(), "Naive Bayes", 1)

    # Plot calibration curve for Linear SVC
    plot_calibration_curve(LinearSVC(), "SVC", 2)

    plt.show()

**Total running time of the script:**
(0 minutes 2.105 seconds)



.. container:: sphx-glr-download

    **Download Python source code:** :download:`plot_calibration_curve.py <plot_calibration_curve.py>`


.. container:: sphx-glr-download

    **Download IPython notebook:** :download:`plot_calibration_curve.ipynb <plot_calibration_curve.ipynb>`