scipy.stats.gamma¶
- scipy.stats.gamma = <scipy.stats._continuous_distns.gamma_gen object at 0x2b2318c1dc10>[source]¶
- A gamma continuous random variable. - As an instance of the rv_continuous class, gamma object inherits from it a collection of generic methods (see below for the full list), and completes them with details specific for this particular distribution. - Notes - The probability density function for gamma is: - gamma.pdf(x, a) = x**(a-1) * exp(-x) / gamma(a) - for x >= 0, a > 0. Here gamma(a) refers to the gamma function. - gamma has a shape parameter a which needs to be set explicitly. - When a is an integer, gamma reduces to the Erlang distribution, and when a=1 to the exponential distribution. - The probability density above is defined in the “standardized” form. To shift and/or scale the distribution use the loc and scale parameters. Specifically, gamma.pdf(x, a, loc, scale) is identically equivalent to gamma.pdf(y, a) / scale with y = (x - loc) / scale. - Examples - >>> from scipy.stats import gamma >>> import matplotlib.pyplot as plt >>> fig, ax = plt.subplots(1, 1) - Calculate a few first moments: - >>> a = 1.99 >>> mean, var, skew, kurt = gamma.stats(a, moments='mvsk') - Display the probability density function (pdf): - >>> x = np.linspace(gamma.ppf(0.01, a), ... gamma.ppf(0.99, a), 100) >>> ax.plot(x, gamma.pdf(x, a), ... 'r-', lw=5, alpha=0.6, label='gamma pdf') - Alternatively, the distribution object can be called (as a function) to fix the shape, location and scale parameters. This returns a “frozen” RV object holding the given parameters fixed. - Freeze the distribution and display the frozen pdf: - >>> rv = gamma(a) >>> ax.plot(x, rv.pdf(x), 'k-', lw=2, label='frozen pdf') - Check accuracy of cdf and ppf: - >>> vals = gamma.ppf([0.001, 0.5, 0.999], a) >>> np.allclose([0.001, 0.5, 0.999], gamma.cdf(vals, a)) True - Generate random numbers: - >>> r = gamma.rvs(a, size=1000) - And compare the histogram: - >>> ax.hist(r, normed=True, histtype='stepfilled', alpha=0.2) >>> ax.legend(loc='best', frameon=False) >>> plt.show()   - Methods - rvs(a, loc=0, scale=1, size=1, random_state=None) - Random variates. - pdf(x, a, loc=0, scale=1) - Probability density function. - logpdf(x, a, loc=0, scale=1) - Log of the probability density function. - cdf(x, a, loc=0, scale=1) - Cumulative distribution function. - logcdf(x, a, loc=0, scale=1) - Log of the cumulative distribution function. - sf(x, a, loc=0, scale=1) - Survival function (also defined as 1 - cdf, but sf is sometimes more accurate). - logsf(x, a, loc=0, scale=1) - Log of the survival function. - ppf(q, a, loc=0, scale=1) - Percent point function (inverse of cdf — percentiles). - isf(q, a, loc=0, scale=1) - Inverse survival function (inverse of sf). - moment(n, a, loc=0, scale=1) - Non-central moment of order n - stats(a, loc=0, scale=1, moments='mv') - Mean(‘m’), variance(‘v’), skew(‘s’), and/or kurtosis(‘k’). - entropy(a, loc=0, scale=1) - (Differential) entropy of the RV. - fit(data, a, loc=0, scale=1) - Parameter estimates for generic data. - expect(func, args=(a,), loc=0, scale=1, lb=None, ub=None, conditional=False, **kwds) - Expected value of a function (of one argument) with respect to the distribution. - median(a, loc=0, scale=1) - Median of the distribution. - mean(a, loc=0, scale=1) - Mean of the distribution. - var(a, loc=0, scale=1) - Variance of the distribution. - std(a, loc=0, scale=1) - Standard deviation of the distribution. - interval(alpha, a, loc=0, scale=1) - Endpoints of the range that contains alpha percent of the distribution 
