scipy.interpolate.Rbf¶
- class scipy.interpolate.Rbf(*args)[source]¶
- A class for radial basis function approximation/interpolation of n-dimensional scattered data. - Parameters: - *args : arrays - x, y, z, ..., d, where x, y, z, ... are the coordinates of the nodes and d is the array of values at the nodes - function : str or callable, optional - The radial basis function, based on the radius, r, given by the norm (default is Euclidean distance); the default is ‘multiquadric’: - 'multiquadric': sqrt((r/self.epsilon)**2 + 1) 'inverse': 1.0/sqrt((r/self.epsilon)**2 + 1) 'gaussian': exp(-(r/self.epsilon)**2) 'linear': r 'cubic': r**3 'quintic': r**5 'thin_plate': r**2 * log(r) - If callable, then it must take 2 arguments (self, r). The epsilon parameter will be available as self.epsilon. Other keyword arguments passed in will be available as well. - epsilon : float, optional - Adjustable constant for gaussian or multiquadrics functions - defaults to approximate average distance between nodes (which is a good start). - smooth : float, optional - Values greater than zero increase the smoothness of the approximation. 0 is for interpolation (default), the function will always go through the nodal points in this case. - norm : callable, optional - A function that returns the ‘distance’ between two points, with inputs as arrays of positions (x, y, z, ...), and an output as an array of distance. E.g, the default: - def euclidean_norm(x1, x2): return sqrt( ((x1 - x2)**2).sum(axis=0) ) - which is called with x1=x1[ndims,newaxis,:] and x2=x2[ndims,:,newaxis] such that the result is a matrix of the distances from each point in x1 to each point in x2. - Examples - >>> from scipy.interpolate import Rbf >>> x, y, z, d = np.random.rand(4, 50) >>> rbfi = Rbf(x, y, z, d) # radial basis function interpolator instance >>> xi = yi = zi = np.linspace(0, 1, 20) >>> di = rbfi(xi, yi, zi) # interpolated values >>> di.shape (20,) - Methods - __call__(*args) 
