BaseMultivariateVectorMultiStartOptimizer.java
- /*
- * Licensed to the Apache Software Foundation (ASF) under one or more
- * contributor license agreements. See the NOTICE file distributed with
- * this work for additional information regarding copyright ownership.
- * The ASF licenses this file to You under the Apache License, Version 2.0
- * (the "License"); you may not use this file except in compliance with
- * the License. You may obtain a copy of the License at
- *
- * http://www.apache.org/licenses/LICENSE-2.0
- *
- * Unless required by applicable law or agreed to in writing, software
- * distributed under the License is distributed on an "AS IS" BASIS,
- * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- * See the License for the specific language governing permissions and
- * limitations under the License.
- */
- package org.apache.commons.math3.optimization;
- import java.util.Arrays;
- import java.util.Comparator;
- import org.apache.commons.math3.analysis.MultivariateVectorFunction;
- import org.apache.commons.math3.exception.ConvergenceException;
- import org.apache.commons.math3.exception.MathIllegalStateException;
- import org.apache.commons.math3.exception.NotStrictlyPositiveException;
- import org.apache.commons.math3.exception.NullArgumentException;
- import org.apache.commons.math3.exception.util.LocalizedFormats;
- import org.apache.commons.math3.random.RandomVectorGenerator;
- /**
- * Base class for all implementations of a multi-start optimizer.
- *
- * This interface is mainly intended to enforce the internal coherence of
- * Commons-Math. Users of the API are advised to base their code on
- * {@link DifferentiableMultivariateVectorMultiStartOptimizer}.
- *
- * @param <FUNC> Type of the objective function to be optimized.
- *
- * @deprecated As of 3.1 (to be removed in 4.0).
- * @since 3.0
- */
- @Deprecated
- public class BaseMultivariateVectorMultiStartOptimizer<FUNC extends MultivariateVectorFunction>
- implements BaseMultivariateVectorOptimizer<FUNC> {
- /** Underlying classical optimizer. */
- private final BaseMultivariateVectorOptimizer<FUNC> optimizer;
- /** Maximal number of evaluations allowed. */
- private int maxEvaluations;
- /** Number of evaluations already performed for all starts. */
- private int totalEvaluations;
- /** Number of starts to go. */
- private int starts;
- /** Random generator for multi-start. */
- private RandomVectorGenerator generator;
- /** Found optima. */
- private PointVectorValuePair[] optima;
- /**
- * Create a multi-start optimizer from a single-start optimizer.
- *
- * @param optimizer Single-start optimizer to wrap.
- * @param starts Number of starts to perform. If {@code starts == 1},
- * the {@link #optimize(int,MultivariateVectorFunction,double[],double[],double[])
- * optimize} will return the same solution as {@code optimizer} would.
- * @param generator Random vector generator to use for restarts.
- * @throws NullArgumentException if {@code optimizer} or {@code generator}
- * is {@code null}.
- * @throws NotStrictlyPositiveException if {@code starts < 1}.
- */
- protected BaseMultivariateVectorMultiStartOptimizer(final BaseMultivariateVectorOptimizer<FUNC> optimizer,
- final int starts,
- final RandomVectorGenerator generator) {
- if (optimizer == null ||
- generator == null) {
- throw new NullArgumentException();
- }
- if (starts < 1) {
- throw new NotStrictlyPositiveException(starts);
- }
- this.optimizer = optimizer;
- this.starts = starts;
- this.generator = generator;
- }
- /**
- * Get all the optima found during the last call to {@link
- * #optimize(int,MultivariateVectorFunction,double[],double[],double[]) optimize}.
- * The optimizer stores all the optima found during a set of
- * restarts. The {@link #optimize(int,MultivariateVectorFunction,double[],double[],double[])
- * optimize} method returns the best point only. This method
- * returns all the points found at the end of each starts, including
- * the best one already returned by the {@link
- * #optimize(int,MultivariateVectorFunction,double[],double[],double[]) optimize} method.
- * <br/>
- * The returned array as one element for each start as specified
- * in the constructor. It is ordered with the results from the
- * runs that did converge first, sorted from best to worst
- * objective value (i.e. in ascending order if minimizing and in
- * descending order if maximizing), followed by and null elements
- * corresponding to the runs that did not converge. This means all
- * elements will be null if the {@link
- * #optimize(int,MultivariateVectorFunction,double[],double[],double[]) optimize} method did
- * throw a {@link ConvergenceException}). This also means that if
- * the first element is not {@code null}, it is the best point found
- * across all starts.
- *
- * @return array containing the optima
- * @throws MathIllegalStateException if {@link
- * #optimize(int,MultivariateVectorFunction,double[],double[],double[]) optimize} has not been
- * called.
- */
- public PointVectorValuePair[] getOptima() {
- if (optima == null) {
- throw new MathIllegalStateException(LocalizedFormats.NO_OPTIMUM_COMPUTED_YET);
- }
- return optima.clone();
- }
- /** {@inheritDoc} */
- public int getMaxEvaluations() {
- return maxEvaluations;
- }
- /** {@inheritDoc} */
- public int getEvaluations() {
- return totalEvaluations;
- }
- /** {@inheritDoc} */
- public ConvergenceChecker<PointVectorValuePair> getConvergenceChecker() {
- return optimizer.getConvergenceChecker();
- }
- /**
- * {@inheritDoc}
- */
- public PointVectorValuePair optimize(int maxEval, final FUNC f,
- double[] target, double[] weights,
- double[] startPoint) {
- maxEvaluations = maxEval;
- RuntimeException lastException = null;
- optima = new PointVectorValuePair[starts];
- totalEvaluations = 0;
- // Multi-start loop.
- for (int i = 0; i < starts; ++i) {
- // CHECKSTYLE: stop IllegalCatch
- try {
- optima[i] = optimizer.optimize(maxEval - totalEvaluations, f, target, weights,
- i == 0 ? startPoint : generator.nextVector());
- } catch (ConvergenceException oe) {
- optima[i] = null;
- } catch (RuntimeException mue) {
- lastException = mue;
- optima[i] = null;
- }
- // CHECKSTYLE: resume IllegalCatch
- totalEvaluations += optimizer.getEvaluations();
- }
- sortPairs(target, weights);
- if (optima[0] == null) {
- throw lastException; // cannot be null if starts >=1
- }
- // Return the found point given the best objective function value.
- return optima[0];
- }
- /**
- * Sort the optima from best to worst, followed by {@code null} elements.
- *
- * @param target Target value for the objective functions at optimum.
- * @param weights Weights for the least-squares cost computation.
- */
- private void sortPairs(final double[] target,
- final double[] weights) {
- Arrays.sort(optima, new Comparator<PointVectorValuePair>() {
- public int compare(final PointVectorValuePair o1,
- final PointVectorValuePair o2) {
- if (o1 == null) {
- return (o2 == null) ? 0 : 1;
- } else if (o2 == null) {
- return -1;
- }
- return Double.compare(weightedResidual(o1), weightedResidual(o2));
- }
- private double weightedResidual(final PointVectorValuePair pv) {
- final double[] value = pv.getValueRef();
- double sum = 0;
- for (int i = 0; i < value.length; ++i) {
- final double ri = value[i] - target[i];
- sum += weights[i] * ri * ri;
- }
- return sum;
- }
- });
- }
- }