AbstractScalarDifferentiableOptimizer.java
- /*
- * Licensed to the Apache Software Foundation (ASF) under one or more
- * contributor license agreements. See the NOTICE file distributed with
- * this work for additional information regarding copyright ownership.
- * The ASF licenses this file to You under the Apache License, Version 2.0
- * (the "License"); you may not use this file except in compliance with
- * the License. You may obtain a copy of the License at
- *
- * http://www.apache.org/licenses/LICENSE-2.0
- *
- * Unless required by applicable law or agreed to in writing, software
- * distributed under the License is distributed on an "AS IS" BASIS,
- * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- * See the License for the specific language governing permissions and
- * limitations under the License.
- */
- package org.apache.commons.math3.optimization.general;
- import org.apache.commons.math3.analysis.DifferentiableMultivariateFunction;
- import org.apache.commons.math3.analysis.MultivariateVectorFunction;
- import org.apache.commons.math3.analysis.FunctionUtils;
- import org.apache.commons.math3.analysis.differentiation.MultivariateDifferentiableFunction;
- import org.apache.commons.math3.optimization.DifferentiableMultivariateOptimizer;
- import org.apache.commons.math3.optimization.GoalType;
- import org.apache.commons.math3.optimization.ConvergenceChecker;
- import org.apache.commons.math3.optimization.PointValuePair;
- import org.apache.commons.math3.optimization.direct.BaseAbstractMultivariateOptimizer;
- /**
- * Base class for implementing optimizers for multivariate scalar
- * differentiable functions.
- * It contains boiler-plate code for dealing with gradient evaluation.
- *
- * @deprecated As of 3.1 (to be removed in 4.0).
- * @since 2.0
- */
- @Deprecated
- public abstract class AbstractScalarDifferentiableOptimizer
- extends BaseAbstractMultivariateOptimizer<DifferentiableMultivariateFunction>
- implements DifferentiableMultivariateOptimizer {
- /**
- * Objective function gradient.
- */
- private MultivariateVectorFunction gradient;
- /**
- * Simple constructor with default settings.
- * The convergence check is set to a
- * {@link org.apache.commons.math3.optimization.SimpleValueChecker
- * SimpleValueChecker}.
- * @deprecated See {@link org.apache.commons.math3.optimization.SimpleValueChecker#SimpleValueChecker()}
- */
- @Deprecated
- protected AbstractScalarDifferentiableOptimizer() {}
- /**
- * @param checker Convergence checker.
- */
- protected AbstractScalarDifferentiableOptimizer(ConvergenceChecker<PointValuePair> checker) {
- super(checker);
- }
- /**
- * Compute the gradient vector.
- *
- * @param evaluationPoint Point at which the gradient must be evaluated.
- * @return the gradient at the specified point.
- * @throws org.apache.commons.math3.exception.TooManyEvaluationsException
- * if the allowed number of evaluations is exceeded.
- */
- protected double[] computeObjectiveGradient(final double[] evaluationPoint) {
- return gradient.value(evaluationPoint);
- }
- /** {@inheritDoc} */
- @Override
- protected PointValuePair optimizeInternal(int maxEval,
- final DifferentiableMultivariateFunction f,
- final GoalType goalType,
- final double[] startPoint) {
- // Store optimization problem characteristics.
- gradient = f.gradient();
- return super.optimizeInternal(maxEval, f, goalType, startPoint);
- }
- /**
- * Optimize an objective function.
- *
- * @param f Objective function.
- * @param goalType Type of optimization goal: either
- * {@link GoalType#MAXIMIZE} or {@link GoalType#MINIMIZE}.
- * @param startPoint Start point for optimization.
- * @param maxEval Maximum number of function evaluations.
- * @return the point/value pair giving the optimal value for objective
- * function.
- * @throws org.apache.commons.math3.exception.DimensionMismatchException
- * if the start point dimension is wrong.
- * @throws org.apache.commons.math3.exception.TooManyEvaluationsException
- * if the maximal number of evaluations is exceeded.
- * @throws org.apache.commons.math3.exception.NullArgumentException if
- * any argument is {@code null}.
- */
- public PointValuePair optimize(final int maxEval,
- final MultivariateDifferentiableFunction f,
- final GoalType goalType,
- final double[] startPoint) {
- return optimizeInternal(maxEval,
- FunctionUtils.toDifferentiableMultivariateFunction(f),
- goalType,
- startPoint);
- }
- }