HarmonicFitter.java
- /*
- * Licensed to the Apache Software Foundation (ASF) under one or more
- * contributor license agreements. See the NOTICE file distributed with
- * this work for additional information regarding copyright ownership.
- * The ASF licenses this file to You under the Apache License, Version 2.0
- * (the "License"); you may not use this file except in compliance with
- * the License. You may obtain a copy of the License at
- *
- * http://www.apache.org/licenses/LICENSE-2.0
- *
- * Unless required by applicable law or agreed to in writing, software
- * distributed under the License is distributed on an "AS IS" BASIS,
- * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- * See the License for the specific language governing permissions and
- * limitations under the License.
- */
- package org.apache.commons.math3.optimization.fitting;
- import org.apache.commons.math3.optimization.DifferentiableMultivariateVectorOptimizer;
- import org.apache.commons.math3.analysis.function.HarmonicOscillator;
- import org.apache.commons.math3.exception.ZeroException;
- import org.apache.commons.math3.exception.NumberIsTooSmallException;
- import org.apache.commons.math3.exception.MathIllegalStateException;
- import org.apache.commons.math3.exception.util.LocalizedFormats;
- import org.apache.commons.math3.util.FastMath;
- /**
- * Class that implements a curve fitting specialized for sinusoids.
- *
- * Harmonic fitting is a very simple case of curve fitting. The
- * estimated coefficients are the amplitude a, the pulsation ω and
- * the phase φ: <code>f (t) = a cos (ω t + φ)</code>. They are
- * searched by a least square estimator initialized with a rough guess
- * based on integrals.
- *
- * @deprecated As of 3.1 (to be removed in 4.0).
- * @since 2.0
- */
- @Deprecated
- public class HarmonicFitter extends CurveFitter<HarmonicOscillator.Parametric> {
- /**
- * Simple constructor.
- * @param optimizer Optimizer to use for the fitting.
- */
- public HarmonicFitter(final DifferentiableMultivariateVectorOptimizer optimizer) {
- super(optimizer);
- }
- /**
- * Fit an harmonic function to the observed points.
- *
- * @param initialGuess First guess values in the following order:
- * <ul>
- * <li>Amplitude</li>
- * <li>Angular frequency</li>
- * <li>Phase</li>
- * </ul>
- * @return the parameters of the harmonic function that best fits the
- * observed points (in the same order as above).
- */
- public double[] fit(double[] initialGuess) {
- return fit(new HarmonicOscillator.Parametric(), initialGuess);
- }
- /**
- * Fit an harmonic function to the observed points.
- * An initial guess will be automatically computed.
- *
- * @return the parameters of the harmonic function that best fits the
- * observed points (see the other {@link #fit(double[]) fit} method.
- * @throws NumberIsTooSmallException if the sample is too short for the
- * the first guess to be computed.
- * @throws ZeroException if the first guess cannot be computed because
- * the abscissa range is zero.
- */
- public double[] fit() {
- return fit((new ParameterGuesser(getObservations())).guess());
- }
- /**
- * This class guesses harmonic coefficients from a sample.
- * <p>The algorithm used to guess the coefficients is as follows:</p>
- *
- * <p>We know f (t) at some sampling points t<sub>i</sub> and want to find a,
- * ω and φ such that f (t) = a cos (ω t + φ).
- * </p>
- *
- * <p>From the analytical expression, we can compute two primitives :
- * <pre>
- * If2 (t) = ∫ f<sup>2</sup> = a<sup>2</sup> × [t + S (t)] / 2
- * If'2 (t) = ∫ f'<sup>2</sup> = a<sup>2</sup> ω<sup>2</sup> × [t - S (t)] / 2
- * where S (t) = sin (2 (ω t + φ)) / (2 ω)
- * </pre>
- * </p>
- *
- * <p>We can remove S between these expressions :
- * <pre>
- * If'2 (t) = a<sup>2</sup> ω<sup>2</sup> t - ω<sup>2</sup> If2 (t)
- * </pre>
- * </p>
- *
- * <p>The preceding expression shows that If'2 (t) is a linear
- * combination of both t and If2 (t): If'2 (t) = A × t + B × If2 (t)
- * </p>
- *
- * <p>From the primitive, we can deduce the same form for definite
- * integrals between t<sub>1</sub> and t<sub>i</sub> for each t<sub>i</sub> :
- * <pre>
- * If2 (t<sub>i</sub>) - If2 (t<sub>1</sub>) = A × (t<sub>i</sub> - t<sub>1</sub>) + B × (If2 (t<sub>i</sub>) - If2 (t<sub>1</sub>))
- * </pre>
- * </p>
- *
- * <p>We can find the coefficients A and B that best fit the sample
- * to this linear expression by computing the definite integrals for
- * each sample points.
- * </p>
- *
- * <p>For a bilinear expression z (x<sub>i</sub>, y<sub>i</sub>) = A × x<sub>i</sub> + B × y<sub>i</sub>, the
- * coefficients A and B that minimize a least square criterion
- * ∑ (z<sub>i</sub> - z (x<sub>i</sub>, y<sub>i</sub>))<sup>2</sup> are given by these expressions:</p>
- * <pre>
- *
- * ∑y<sub>i</sub>y<sub>i</sub> ∑x<sub>i</sub>z<sub>i</sub> - ∑x<sub>i</sub>y<sub>i</sub> ∑y<sub>i</sub>z<sub>i</sub>
- * A = ------------------------
- * ∑x<sub>i</sub>x<sub>i</sub> ∑y<sub>i</sub>y<sub>i</sub> - ∑x<sub>i</sub>y<sub>i</sub> ∑x<sub>i</sub>y<sub>i</sub>
- *
- * ∑x<sub>i</sub>x<sub>i</sub> ∑y<sub>i</sub>z<sub>i</sub> - ∑x<sub>i</sub>y<sub>i</sub> ∑x<sub>i</sub>z<sub>i</sub>
- * B = ------------------------
- * ∑x<sub>i</sub>x<sub>i</sub> ∑y<sub>i</sub>y<sub>i</sub> - ∑x<sub>i</sub>y<sub>i</sub> ∑x<sub>i</sub>y<sub>i</sub>
- * </pre>
- * </p>
- *
- *
- * <p>In fact, we can assume both a and ω are positive and
- * compute them directly, knowing that A = a<sup>2</sup> ω<sup>2</sup> and that
- * B = - ω<sup>2</sup>. The complete algorithm is therefore:</p>
- * <pre>
- *
- * for each t<sub>i</sub> from t<sub>1</sub> to t<sub>n-1</sub>, compute:
- * f (t<sub>i</sub>)
- * f' (t<sub>i</sub>) = (f (t<sub>i+1</sub>) - f(t<sub>i-1</sub>)) / (t<sub>i+1</sub> - t<sub>i-1</sub>)
- * x<sub>i</sub> = t<sub>i</sub> - t<sub>1</sub>
- * y<sub>i</sub> = ∫ f<sup>2</sup> from t<sub>1</sub> to t<sub>i</sub>
- * z<sub>i</sub> = ∫ f'<sup>2</sup> from t<sub>1</sub> to t<sub>i</sub>
- * update the sums ∑x<sub>i</sub>x<sub>i</sub>, ∑y<sub>i</sub>y<sub>i</sub>, ∑x<sub>i</sub>y<sub>i</sub>, ∑x<sub>i</sub>z<sub>i</sub> and ∑y<sub>i</sub>z<sub>i</sub>
- * end for
- *
- * |--------------------------
- * \ | ∑y<sub>i</sub>y<sub>i</sub> ∑x<sub>i</sub>z<sub>i</sub> - ∑x<sub>i</sub>y<sub>i</sub> ∑y<sub>i</sub>z<sub>i</sub>
- * a = \ | ------------------------
- * \| ∑x<sub>i</sub>y<sub>i</sub> ∑x<sub>i</sub>z<sub>i</sub> - ∑x<sub>i</sub>x<sub>i</sub> ∑y<sub>i</sub>z<sub>i</sub>
- *
- *
- * |--------------------------
- * \ | ∑x<sub>i</sub>y<sub>i</sub> ∑x<sub>i</sub>z<sub>i</sub> - ∑x<sub>i</sub>x<sub>i</sub> ∑y<sub>i</sub>z<sub>i</sub>
- * ω = \ | ------------------------
- * \| ∑x<sub>i</sub>x<sub>i</sub> ∑y<sub>i</sub>y<sub>i</sub> - ∑x<sub>i</sub>y<sub>i</sub> ∑x<sub>i</sub>y<sub>i</sub>
- *
- * </pre>
- * </p>
- *
- * <p>Once we know ω, we can compute:
- * <pre>
- * fc = ω f (t) cos (ω t) - f' (t) sin (ω t)
- * fs = ω f (t) sin (ω t) + f' (t) cos (ω t)
- * </pre>
- * </p>
- *
- * <p>It appears that <code>fc = a ω cos (φ)</code> and
- * <code>fs = -a ω sin (φ)</code>, so we can use these
- * expressions to compute φ. The best estimate over the sample is
- * given by averaging these expressions.
- * </p>
- *
- * <p>Since integrals and means are involved in the preceding
- * estimations, these operations run in O(n) time, where n is the
- * number of measurements.</p>
- */
- public static class ParameterGuesser {
- /** Amplitude. */
- private final double a;
- /** Angular frequency. */
- private final double omega;
- /** Phase. */
- private final double phi;
- /**
- * Simple constructor.
- *
- * @param observations Sampled observations.
- * @throws NumberIsTooSmallException if the sample is too short.
- * @throws ZeroException if the abscissa range is zero.
- * @throws MathIllegalStateException when the guessing procedure cannot
- * produce sensible results.
- */
- public ParameterGuesser(WeightedObservedPoint[] observations) {
- if (observations.length < 4) {
- throw new NumberIsTooSmallException(LocalizedFormats.INSUFFICIENT_OBSERVED_POINTS_IN_SAMPLE,
- observations.length, 4, true);
- }
- final WeightedObservedPoint[] sorted = sortObservations(observations);
- final double aOmega[] = guessAOmega(sorted);
- a = aOmega[0];
- omega = aOmega[1];
- phi = guessPhi(sorted);
- }
- /**
- * Gets an estimation of the parameters.
- *
- * @return the guessed parameters, in the following order:
- * <ul>
- * <li>Amplitude</li>
- * <li>Angular frequency</li>
- * <li>Phase</li>
- * </ul>
- */
- public double[] guess() {
- return new double[] { a, omega, phi };
- }
- /**
- * Sort the observations with respect to the abscissa.
- *
- * @param unsorted Input observations.
- * @return the input observations, sorted.
- */
- private WeightedObservedPoint[] sortObservations(WeightedObservedPoint[] unsorted) {
- final WeightedObservedPoint[] observations = unsorted.clone();
- // Since the samples are almost always already sorted, this
- // method is implemented as an insertion sort that reorders the
- // elements in place. Insertion sort is very efficient in this case.
- WeightedObservedPoint curr = observations[0];
- for (int j = 1; j < observations.length; ++j) {
- WeightedObservedPoint prec = curr;
- curr = observations[j];
- if (curr.getX() < prec.getX()) {
- // the current element should be inserted closer to the beginning
- int i = j - 1;
- WeightedObservedPoint mI = observations[i];
- while ((i >= 0) && (curr.getX() < mI.getX())) {
- observations[i + 1] = mI;
- if (i-- != 0) {
- mI = observations[i];
- }
- }
- observations[i + 1] = curr;
- curr = observations[j];
- }
- }
- return observations;
- }
- /**
- * Estimate a first guess of the amplitude and angular frequency.
- * This method assumes that the {@link #sortObservations(WeightedObservedPoint[])} method
- * has been called previously.
- *
- * @param observations Observations, sorted w.r.t. abscissa.
- * @throws ZeroException if the abscissa range is zero.
- * @throws MathIllegalStateException when the guessing procedure cannot
- * produce sensible results.
- * @return the guessed amplitude (at index 0) and circular frequency
- * (at index 1).
- */
- private double[] guessAOmega(WeightedObservedPoint[] observations) {
- final double[] aOmega = new double[2];
- // initialize the sums for the linear model between the two integrals
- double sx2 = 0;
- double sy2 = 0;
- double sxy = 0;
- double sxz = 0;
- double syz = 0;
- double currentX = observations[0].getX();
- double currentY = observations[0].getY();
- double f2Integral = 0;
- double fPrime2Integral = 0;
- final double startX = currentX;
- for (int i = 1; i < observations.length; ++i) {
- // one step forward
- final double previousX = currentX;
- final double previousY = currentY;
- currentX = observations[i].getX();
- currentY = observations[i].getY();
- // update the integrals of f<sup>2</sup> and f'<sup>2</sup>
- // considering a linear model for f (and therefore constant f')
- final double dx = currentX - previousX;
- final double dy = currentY - previousY;
- final double f2StepIntegral =
- dx * (previousY * previousY + previousY * currentY + currentY * currentY) / 3;
- final double fPrime2StepIntegral = dy * dy / dx;
- final double x = currentX - startX;
- f2Integral += f2StepIntegral;
- fPrime2Integral += fPrime2StepIntegral;
- sx2 += x * x;
- sy2 += f2Integral * f2Integral;
- sxy += x * f2Integral;
- sxz += x * fPrime2Integral;
- syz += f2Integral * fPrime2Integral;
- }
- // compute the amplitude and pulsation coefficients
- double c1 = sy2 * sxz - sxy * syz;
- double c2 = sxy * sxz - sx2 * syz;
- double c3 = sx2 * sy2 - sxy * sxy;
- if ((c1 / c2 < 0) || (c2 / c3 < 0)) {
- final int last = observations.length - 1;
- // Range of the observations, assuming that the
- // observations are sorted.
- final double xRange = observations[last].getX() - observations[0].getX();
- if (xRange == 0) {
- throw new ZeroException();
- }
- aOmega[1] = 2 * Math.PI / xRange;
- double yMin = Double.POSITIVE_INFINITY;
- double yMax = Double.NEGATIVE_INFINITY;
- for (int i = 1; i < observations.length; ++i) {
- final double y = observations[i].getY();
- if (y < yMin) {
- yMin = y;
- }
- if (y > yMax) {
- yMax = y;
- }
- }
- aOmega[0] = 0.5 * (yMax - yMin);
- } else {
- if (c2 == 0) {
- // In some ill-conditioned cases (cf. MATH-844), the guesser
- // procedure cannot produce sensible results.
- throw new MathIllegalStateException(LocalizedFormats.ZERO_DENOMINATOR);
- }
- aOmega[0] = FastMath.sqrt(c1 / c2);
- aOmega[1] = FastMath.sqrt(c2 / c3);
- }
- return aOmega;
- }
- /**
- * Estimate a first guess of the phase.
- *
- * @param observations Observations, sorted w.r.t. abscissa.
- * @return the guessed phase.
- */
- private double guessPhi(WeightedObservedPoint[] observations) {
- // initialize the means
- double fcMean = 0;
- double fsMean = 0;
- double currentX = observations[0].getX();
- double currentY = observations[0].getY();
- for (int i = 1; i < observations.length; ++i) {
- // one step forward
- final double previousX = currentX;
- final double previousY = currentY;
- currentX = observations[i].getX();
- currentY = observations[i].getY();
- final double currentYPrime = (currentY - previousY) / (currentX - previousX);
- double omegaX = omega * currentX;
- double cosine = FastMath.cos(omegaX);
- double sine = FastMath.sin(omegaX);
- fcMean += omega * currentY * cosine - currentYPrime * sine;
- fsMean += omega * currentY * sine + currentYPrime * cosine;
- }
- return FastMath.atan2(-fsMean, fcMean);
- }
- }
- }