SimplexOptimizer.java
- /*
- * Licensed to the Apache Software Foundation (ASF) under one or more
- * contributor license agreements. See the NOTICE file distributed with
- * this work for additional information regarding copyright ownership.
- * The ASF licenses this file to You under the Apache License, Version 2.0
- * (the "License"); you may not use this file except in compliance with
- * the License. You may obtain a copy of the License at
- *
- * http://www.apache.org/licenses/LICENSE-2.0
- *
- * Unless required by applicable law or agreed to in writing, software
- * distributed under the License is distributed on an "AS IS" BASIS,
- * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- * See the License for the specific language governing permissions and
- * limitations under the License.
- */
- package org.apache.commons.math3.optimization.direct;
- import java.util.Comparator;
- import org.apache.commons.math3.analysis.MultivariateFunction;
- import org.apache.commons.math3.exception.NullArgumentException;
- import org.apache.commons.math3.optimization.GoalType;
- import org.apache.commons.math3.optimization.ConvergenceChecker;
- import org.apache.commons.math3.optimization.PointValuePair;
- import org.apache.commons.math3.optimization.SimpleValueChecker;
- import org.apache.commons.math3.optimization.MultivariateOptimizer;
- import org.apache.commons.math3.optimization.OptimizationData;
- /**
- * This class implements simplex-based direct search optimization.
- *
- * <p>
- * Direct search methods only use objective function values, they do
- * not need derivatives and don't either try to compute approximation
- * of the derivatives. According to a 1996 paper by Margaret H. Wright
- * (<a href="http://cm.bell-labs.com/cm/cs/doc/96/4-02.ps.gz">Direct
- * Search Methods: Once Scorned, Now Respectable</a>), they are used
- * when either the computation of the derivative is impossible (noisy
- * functions, unpredictable discontinuities) or difficult (complexity,
- * computation cost). In the first cases, rather than an optimum, a
- * <em>not too bad</em> point is desired. In the latter cases, an
- * optimum is desired but cannot be reasonably found. In all cases
- * direct search methods can be useful.
- * </p>
- * <p>
- * Simplex-based direct search methods are based on comparison of
- * the objective function values at the vertices of a simplex (which is a
- * set of n+1 points in dimension n) that is updated by the algorithms
- * steps.
- * <p>
- * <p>
- * The {@link #setSimplex(AbstractSimplex) setSimplex} method <em>must</em>
- * be called prior to calling the {@code optimize} method.
- * </p>
- * <p>
- * Each call to {@link #optimize(int,MultivariateFunction,GoalType,double[])
- * optimize} will re-use the start configuration of the current simplex and
- * move it such that its first vertex is at the provided start point of the
- * optimization. If the {@code optimize} method is called to solve a different
- * problem and the number of parameters change, the simplex must be
- * re-initialized to one with the appropriate dimensions.
- * </p>
- * <p>
- * Convergence is checked by providing the <em>worst</em> points of
- * previous and current simplex to the convergence checker, not the best
- * ones.
- * </p>
- * <p>
- * This simplex optimizer implementation does not directly support constrained
- * optimization with simple bounds, so for such optimizations, either a more
- * dedicated method must be used like {@link CMAESOptimizer} or {@link
- * BOBYQAOptimizer}, or the optimized method must be wrapped in an adapter like
- * {@link MultivariateFunctionMappingAdapter} or {@link
- * MultivariateFunctionPenaltyAdapter}.
- * </p>
- *
- * @see AbstractSimplex
- * @see MultivariateFunctionMappingAdapter
- * @see MultivariateFunctionPenaltyAdapter
- * @see CMAESOptimizer
- * @see BOBYQAOptimizer
- * @deprecated As of 3.1 (to be removed in 4.0).
- * @since 3.0
- */
- @SuppressWarnings("boxing") // deprecated anyway
- @Deprecated
- public class SimplexOptimizer
- extends BaseAbstractMultivariateOptimizer<MultivariateFunction>
- implements MultivariateOptimizer {
- /** Simplex. */
- private AbstractSimplex simplex;
- /**
- * Constructor using a default {@link SimpleValueChecker convergence
- * checker}.
- * @deprecated See {@link SimpleValueChecker#SimpleValueChecker()}
- */
- @Deprecated
- public SimplexOptimizer() {
- this(new SimpleValueChecker());
- }
- /**
- * @param checker Convergence checker.
- */
- public SimplexOptimizer(ConvergenceChecker<PointValuePair> checker) {
- super(checker);
- }
- /**
- * @param rel Relative threshold.
- * @param abs Absolute threshold.
- */
- public SimplexOptimizer(double rel, double abs) {
- this(new SimpleValueChecker(rel, abs));
- }
- /**
- * Set the simplex algorithm.
- *
- * @param simplex Simplex.
- * @deprecated As of 3.1. The initial simplex can now be passed as an
- * argument of the {@link #optimize(int,MultivariateFunction,GoalType,OptimizationData[])}
- * method.
- */
- @Deprecated
- public void setSimplex(AbstractSimplex simplex) {
- parseOptimizationData(simplex);
- }
- /**
- * Optimize an objective function.
- *
- * @param maxEval Allowed number of evaluations of the objective function.
- * @param f Objective function.
- * @param goalType Optimization type.
- * @param optData Optimization data. The following data will be looked for:
- * <ul>
- * <li>{@link org.apache.commons.math3.optimization.InitialGuess InitialGuess}</li>
- * <li>{@link AbstractSimplex}</li>
- * </ul>
- * @return the point/value pair giving the optimal value for objective
- * function.
- */
- @Override
- protected PointValuePair optimizeInternal(int maxEval, MultivariateFunction f,
- GoalType goalType,
- OptimizationData... optData) {
- // Scan "optData" for the input specific to this optimizer.
- parseOptimizationData(optData);
- // The parent's method will retrieve the common parameters from
- // "optData" and call "doOptimize".
- return super.optimizeInternal(maxEval, f, goalType, optData);
- }
- /**
- * Scans the list of (required and optional) optimization data that
- * characterize the problem.
- *
- * @param optData Optimization data. The following data will be looked for:
- * <ul>
- * <li>{@link AbstractSimplex}</li>
- * </ul>
- */
- private void parseOptimizationData(OptimizationData... optData) {
- // The existing values (as set by the previous call) are reused if
- // not provided in the argument list.
- for (OptimizationData data : optData) {
- if (data instanceof AbstractSimplex) {
- simplex = (AbstractSimplex) data;
- continue;
- }
- }
- }
- /** {@inheritDoc} */
- @Override
- protected PointValuePair doOptimize() {
- if (simplex == null) {
- throw new NullArgumentException();
- }
- // Indirect call to "computeObjectiveValue" in order to update the
- // evaluations counter.
- final MultivariateFunction evalFunc
- = new MultivariateFunction() {
- public double value(double[] point) {
- return computeObjectiveValue(point);
- }
- };
- final boolean isMinim = getGoalType() == GoalType.MINIMIZE;
- final Comparator<PointValuePair> comparator
- = new Comparator<PointValuePair>() {
- public int compare(final PointValuePair o1,
- final PointValuePair o2) {
- final double v1 = o1.getValue();
- final double v2 = o2.getValue();
- return isMinim ? Double.compare(v1, v2) : Double.compare(v2, v1);
- }
- };
- // Initialize search.
- simplex.build(getStartPoint());
- simplex.evaluate(evalFunc, comparator);
- PointValuePair[] previous = null;
- int iteration = 0;
- final ConvergenceChecker<PointValuePair> checker = getConvergenceChecker();
- while (true) {
- if (iteration > 0) {
- boolean converged = true;
- for (int i = 0; i < simplex.getSize(); i++) {
- PointValuePair prev = previous[i];
- converged = converged &&
- checker.converged(iteration, prev, simplex.getPoint(i));
- }
- if (converged) {
- // We have found an optimum.
- return simplex.getPoint(0);
- }
- }
- // We still need to search.
- previous = simplex.getPoints();
- simplex.iterate(evalFunc, comparator);
- ++iteration;
- }
- }
- }