GaussNewtonOptimizer.java
- /*
- * Licensed to the Apache Software Foundation (ASF) under one or more
- * contributor license agreements. See the NOTICE file distributed with
- * this work for additional information regarding copyright ownership.
- * The ASF licenses this file to You under the Apache License, Version 2.0
- * (the "License"); you may not use this file except in compliance with
- * the License. You may obtain a copy of the License at
- *
- * http://www.apache.org/licenses/LICENSE-2.0
- *
- * Unless required by applicable law or agreed to in writing, software
- * distributed under the License is distributed on an "AS IS" BASIS,
- * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- * See the License for the specific language governing permissions and
- * limitations under the License.
- */
- package org.apache.commons.math3.optim.nonlinear.vector.jacobian;
- import org.apache.commons.math3.exception.ConvergenceException;
- import org.apache.commons.math3.exception.NullArgumentException;
- import org.apache.commons.math3.exception.MathInternalError;
- import org.apache.commons.math3.exception.MathUnsupportedOperationException;
- import org.apache.commons.math3.exception.util.LocalizedFormats;
- import org.apache.commons.math3.linear.ArrayRealVector;
- import org.apache.commons.math3.linear.BlockRealMatrix;
- import org.apache.commons.math3.linear.DecompositionSolver;
- import org.apache.commons.math3.linear.LUDecomposition;
- import org.apache.commons.math3.linear.QRDecomposition;
- import org.apache.commons.math3.linear.RealMatrix;
- import org.apache.commons.math3.linear.SingularMatrixException;
- import org.apache.commons.math3.optim.ConvergenceChecker;
- import org.apache.commons.math3.optim.PointVectorValuePair;
- /**
- * Gauss-Newton least-squares solver.
- * <br/>
- * Constraints are not supported: the call to
- * {@link #optimize(OptimizationData[]) optimize} will throw
- * {@link MathUnsupportedOperationException} if bounds are passed to it.
- *
- * <p>
- * This class solve a least-square problem by solving the normal equations
- * of the linearized problem at each iteration. Either LU decomposition or
- * QR decomposition can be used to solve the normal equations. LU decomposition
- * is faster but QR decomposition is more robust for difficult problems.
- * </p>
- *
- * @since 2.0
- * @deprecated All classes and interfaces in this package are deprecated.
- * The optimizers that were provided here were moved to the
- * {@link org.apache.commons.math3.fitting.leastsquares} package
- * (cf. MATH-1008).
- */
- @Deprecated
- public class GaussNewtonOptimizer extends AbstractLeastSquaresOptimizer {
- /** Indicator for using LU decomposition. */
- private final boolean useLU;
- /**
- * Simple constructor with default settings.
- * The normal equations will be solved using LU decomposition.
- *
- * @param checker Convergence checker.
- */
- public GaussNewtonOptimizer(ConvergenceChecker<PointVectorValuePair> checker) {
- this(true, checker);
- }
- /**
- * @param useLU If {@code true}, the normal equations will be solved
- * using LU decomposition, otherwise they will be solved using QR
- * decomposition.
- * @param checker Convergence checker.
- */
- public GaussNewtonOptimizer(final boolean useLU,
- ConvergenceChecker<PointVectorValuePair> checker) {
- super(checker);
- this.useLU = useLU;
- }
- /** {@inheritDoc} */
- @Override
- public PointVectorValuePair doOptimize() {
- checkParameters();
- final ConvergenceChecker<PointVectorValuePair> checker
- = getConvergenceChecker();
- // Computation will be useless without a checker (see "for-loop").
- if (checker == null) {
- throw new NullArgumentException();
- }
- final double[] targetValues = getTarget();
- final int nR = targetValues.length; // Number of observed data.
- final RealMatrix weightMatrix = getWeight();
- // Diagonal of the weight matrix.
- final double[] residualsWeights = new double[nR];
- for (int i = 0; i < nR; i++) {
- residualsWeights[i] = weightMatrix.getEntry(i, i);
- }
- final double[] currentPoint = getStartPoint();
- final int nC = currentPoint.length;
- // iterate until convergence is reached
- PointVectorValuePair current = null;
- for (boolean converged = false; !converged;) {
- incrementIterationCount();
- // evaluate the objective function and its jacobian
- PointVectorValuePair previous = current;
- // Value of the objective function at "currentPoint".
- final double[] currentObjective = computeObjectiveValue(currentPoint);
- final double[] currentResiduals = computeResiduals(currentObjective);
- final RealMatrix weightedJacobian = computeWeightedJacobian(currentPoint);
- current = new PointVectorValuePair(currentPoint, currentObjective);
- // build the linear problem
- final double[] b = new double[nC];
- final double[][] a = new double[nC][nC];
- for (int i = 0; i < nR; ++i) {
- final double[] grad = weightedJacobian.getRow(i);
- final double weight = residualsWeights[i];
- final double residual = currentResiduals[i];
- // compute the normal equation
- final double wr = weight * residual;
- for (int j = 0; j < nC; ++j) {
- b[j] += wr * grad[j];
- }
- // build the contribution matrix for measurement i
- for (int k = 0; k < nC; ++k) {
- double[] ak = a[k];
- double wgk = weight * grad[k];
- for (int l = 0; l < nC; ++l) {
- ak[l] += wgk * grad[l];
- }
- }
- }
- // Check convergence.
- if (previous != null) {
- converged = checker.converged(getIterations(), previous, current);
- if (converged) {
- setCost(computeCost(currentResiduals));
- return current;
- }
- }
- try {
- // solve the linearized least squares problem
- RealMatrix mA = new BlockRealMatrix(a);
- DecompositionSolver solver = useLU ?
- new LUDecomposition(mA).getSolver() :
- new QRDecomposition(mA).getSolver();
- final double[] dX = solver.solve(new ArrayRealVector(b, false)).toArray();
- // update the estimated parameters
- for (int i = 0; i < nC; ++i) {
- currentPoint[i] += dX[i];
- }
- } catch (SingularMatrixException e) {
- throw new ConvergenceException(LocalizedFormats.UNABLE_TO_SOLVE_SINGULAR_PROBLEM);
- }
- }
- // Must never happen.
- throw new MathInternalError();
- }
- /**
- * @throws MathUnsupportedOperationException if bounds were passed to the
- * {@link #optimize(OptimizationData[]) optimize} method.
- */
- private void checkParameters() {
- if (getLowerBound() != null ||
- getUpperBound() != null) {
- throw new MathUnsupportedOperationException(LocalizedFormats.CONSTRAINT);
- }
- }
- }