AbstractLeastSquaresOptimizer.java
- /*
- * Licensed to the Apache Software Foundation (ASF) under one or more
- * contributor license agreements. See the NOTICE file distributed with
- * this work for additional information regarding copyright ownership.
- * The ASF licenses this file to You under the Apache License, Version 2.0
- * (the "License"); you may not use this file except in compliance with
- * the License. You may obtain a copy of the License at
- *
- * http://www.apache.org/licenses/LICENSE-2.0
- *
- * Unless required by applicable law or agreed to in writing, software
- * distributed under the License is distributed on an "AS IS" BASIS,
- * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- * See the License for the specific language governing permissions and
- * limitations under the License.
- */
- package org.apache.commons.math3.optim.nonlinear.vector.jacobian;
- import org.apache.commons.math3.exception.DimensionMismatchException;
- import org.apache.commons.math3.exception.TooManyEvaluationsException;
- import org.apache.commons.math3.linear.ArrayRealVector;
- import org.apache.commons.math3.linear.RealMatrix;
- import org.apache.commons.math3.linear.DiagonalMatrix;
- import org.apache.commons.math3.linear.DecompositionSolver;
- import org.apache.commons.math3.linear.MatrixUtils;
- import org.apache.commons.math3.linear.QRDecomposition;
- import org.apache.commons.math3.linear.EigenDecomposition;
- import org.apache.commons.math3.optim.OptimizationData;
- import org.apache.commons.math3.optim.ConvergenceChecker;
- import org.apache.commons.math3.optim.PointVectorValuePair;
- import org.apache.commons.math3.optim.nonlinear.vector.Weight;
- import org.apache.commons.math3.optim.nonlinear.vector.JacobianMultivariateVectorOptimizer;
- import org.apache.commons.math3.util.FastMath;
- /**
- * Base class for implementing least-squares optimizers.
- * It provides methods for error estimation.
- *
- * @since 3.1
- * @deprecated All classes and interfaces in this package are deprecated.
- * The optimizers that were provided here were moved to the
- * {@link org.apache.commons.math3.fitting.leastsquares} package
- * (cf. MATH-1008).
- */
- @Deprecated
- public abstract class AbstractLeastSquaresOptimizer
- extends JacobianMultivariateVectorOptimizer {
- /** Square-root of the weight matrix. */
- private RealMatrix weightMatrixSqrt;
- /** Cost value (square root of the sum of the residuals). */
- private double cost;
- /**
- * @param checker Convergence checker.
- */
- protected AbstractLeastSquaresOptimizer(ConvergenceChecker<PointVectorValuePair> checker) {
- super(checker);
- }
- /**
- * Computes the weighted Jacobian matrix.
- *
- * @param params Model parameters at which to compute the Jacobian.
- * @return the weighted Jacobian: W<sup>1/2</sup> J.
- * @throws DimensionMismatchException if the Jacobian dimension does not
- * match problem dimension.
- */
- protected RealMatrix computeWeightedJacobian(double[] params) {
- return weightMatrixSqrt.multiply(MatrixUtils.createRealMatrix(computeJacobian(params)));
- }
- /**
- * Computes the cost.
- *
- * @param residuals Residuals.
- * @return the cost.
- * @see #computeResiduals(double[])
- */
- protected double computeCost(double[] residuals) {
- final ArrayRealVector r = new ArrayRealVector(residuals);
- return FastMath.sqrt(r.dotProduct(getWeight().operate(r)));
- }
- /**
- * Gets the root-mean-square (RMS) value.
- *
- * The RMS the root of the arithmetic mean of the square of all weighted
- * residuals.
- * This is related to the criterion that is minimized by the optimizer
- * as follows: If <em>c</em> if the criterion, and <em>n</em> is the
- * number of measurements, then the RMS is <em>sqrt (c/n)</em>.
- *
- * @return the RMS value.
- */
- public double getRMS() {
- return FastMath.sqrt(getChiSquare() / getTargetSize());
- }
- /**
- * Get a Chi-Square-like value assuming the N residuals follow N
- * distinct normal distributions centered on 0 and whose variances are
- * the reciprocal of the weights.
- * @return chi-square value
- */
- public double getChiSquare() {
- return cost * cost;
- }
- /**
- * Gets the square-root of the weight matrix.
- *
- * @return the square-root of the weight matrix.
- */
- public RealMatrix getWeightSquareRoot() {
- return weightMatrixSqrt.copy();
- }
- /**
- * Sets the cost.
- *
- * @param cost Cost value.
- */
- protected void setCost(double cost) {
- this.cost = cost;
- }
- /**
- * Get the covariance matrix of the optimized parameters.
- * <br/>
- * Note that this operation involves the inversion of the
- * <code>J<sup>T</sup>J</code> matrix, where {@code J} is the
- * Jacobian matrix.
- * The {@code threshold} parameter is a way for the caller to specify
- * that the result of this computation should be considered meaningless,
- * and thus trigger an exception.
- *
- * @param params Model parameters.
- * @param threshold Singularity threshold.
- * @return the covariance matrix.
- * @throws org.apache.commons.math3.linear.SingularMatrixException
- * if the covariance matrix cannot be computed (singular problem).
- */
- public double[][] computeCovariances(double[] params,
- double threshold) {
- // Set up the Jacobian.
- final RealMatrix j = computeWeightedJacobian(params);
- // Compute transpose(J)J.
- final RealMatrix jTj = j.transpose().multiply(j);
- // Compute the covariances matrix.
- final DecompositionSolver solver
- = new QRDecomposition(jTj, threshold).getSolver();
- return solver.getInverse().getData();
- }
- /**
- * Computes an estimate of the standard deviation of the parameters. The
- * returned values are the square root of the diagonal coefficients of the
- * covariance matrix, {@code sd(a[i]) ~= sqrt(C[i][i])}, where {@code a[i]}
- * is the optimized value of the {@code i}-th parameter, and {@code C} is
- * the covariance matrix.
- *
- * @param params Model parameters.
- * @param covarianceSingularityThreshold Singularity threshold (see
- * {@link #computeCovariances(double[],double) computeCovariances}).
- * @return an estimate of the standard deviation of the optimized parameters
- * @throws org.apache.commons.math3.linear.SingularMatrixException
- * if the covariance matrix cannot be computed.
- */
- public double[] computeSigma(double[] params,
- double covarianceSingularityThreshold) {
- final int nC = params.length;
- final double[] sig = new double[nC];
- final double[][] cov = computeCovariances(params, covarianceSingularityThreshold);
- for (int i = 0; i < nC; ++i) {
- sig[i] = FastMath.sqrt(cov[i][i]);
- }
- return sig;
- }
- /**
- * {@inheritDoc}
- *
- * @param optData Optimization data. In addition to those documented in
- * {@link JacobianMultivariateVectorOptimizer#parseOptimizationData(OptimizationData[])
- * JacobianMultivariateVectorOptimizer}, this method will register the following data:
- * <ul>
- * <li>{@link org.apache.commons.math3.optim.nonlinear.vector.Weight}</li>
- * </ul>
- * @return {@inheritDoc}
- * @throws TooManyEvaluationsException if the maximal number of
- * evaluations is exceeded.
- * @throws DimensionMismatchException if the initial guess, target, and weight
- * arguments have inconsistent dimensions.
- */
- @Override
- public PointVectorValuePair optimize(OptimizationData... optData)
- throws TooManyEvaluationsException {
- // Set up base class and perform computation.
- return super.optimize(optData);
- }
- /**
- * Computes the residuals.
- * The residual is the difference between the observed (target)
- * values and the model (objective function) value.
- * There is one residual for each element of the vector-valued
- * function.
- *
- * @param objectiveValue Value of the the objective function. This is
- * the value returned from a call to
- * {@link #computeObjectiveValue(double[]) computeObjectiveValue}
- * (whose array argument contains the model parameters).
- * @return the residuals.
- * @throws DimensionMismatchException if {@code params} has a wrong
- * length.
- */
- protected double[] computeResiduals(double[] objectiveValue) {
- final double[] target = getTarget();
- if (objectiveValue.length != target.length) {
- throw new DimensionMismatchException(target.length,
- objectiveValue.length);
- }
- final double[] residuals = new double[target.length];
- for (int i = 0; i < target.length; i++) {
- residuals[i] = target[i] - objectiveValue[i];
- }
- return residuals;
- }
- /**
- * Scans the list of (required and optional) optimization data that
- * characterize the problem.
- * If the weight matrix is specified, the {@link #weightMatrixSqrt}
- * field is recomputed.
- *
- * @param optData Optimization data. The following data will be looked for:
- * <ul>
- * <li>{@link Weight}</li>
- * </ul>
- */
- @Override
- protected void parseOptimizationData(OptimizationData... optData) {
- // Allow base class to register its own data.
- super.parseOptimizationData(optData);
- // The existing values (as set by the previous call) are reused if
- // not provided in the argument list.
- for (OptimizationData data : optData) {
- if (data instanceof Weight) {
- weightMatrixSqrt = squareRoot(((Weight) data).getWeight());
- // If more data must be parsed, this statement _must_ be
- // changed to "continue".
- break;
- }
- }
- }
- /**
- * Computes the square-root of the weight matrix.
- *
- * @param m Symmetric, positive-definite (weight) matrix.
- * @return the square-root of the weight matrix.
- */
- private RealMatrix squareRoot(RealMatrix m) {
- if (m instanceof DiagonalMatrix) {
- final int dim = m.getRowDimension();
- final RealMatrix sqrtM = new DiagonalMatrix(dim);
- for (int i = 0; i < dim; i++) {
- sqrtM.setEntry(i, i, FastMath.sqrt(m.getEntry(i, i)));
- }
- return sqrtM;
- } else {
- final EigenDecomposition dec = new EigenDecomposition(m);
- return dec.getSquareRoot();
- }
- }
- }