ParetoDistribution.java
- /*
 -  * Licensed to the Apache Software Foundation (ASF) under one or more
 -  * contributor license agreements.  See the NOTICE file distributed with
 -  * this work for additional information regarding copyright ownership.
 -  * The ASF licenses this file to You under the Apache License, Version 2.0
 -  * (the "License"); you may not use this file except in compliance with
 -  * the License.  You may obtain a copy of the License at
 -  *
 -  *      http://www.apache.org/licenses/LICENSE-2.0
 -  *
 -  * Unless required by applicable law or agreed to in writing, software
 -  * distributed under the License is distributed on an "AS IS" BASIS,
 -  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 -  * See the License for the specific language governing permissions and
 -  * limitations under the License.
 -  */
 
- package org.apache.commons.math3.distribution;
 
- import org.apache.commons.math3.exception.NotStrictlyPositiveException;
 - import org.apache.commons.math3.exception.NumberIsTooLargeException;
 - import org.apache.commons.math3.exception.util.LocalizedFormats;
 - import org.apache.commons.math3.random.RandomGenerator;
 - import org.apache.commons.math3.random.Well19937c;
 - import org.apache.commons.math3.util.FastMath;
 
- /**
 -  * Implementation of the Pareto distribution.
 -  *
 -  * <p>
 -  * <strong>Parameters:</strong>
 -  * The probability distribution function of {@code X} is given by (for {@code x >= k}):
 -  * <pre>
 -  *  α * k^α / x^(α + 1)
 -  * </pre>
 -  * <p>
 -  * <ul>
 -  * <li>{@code k} is the <em>scale</em> parameter: this is the minimum possible value of {@code X},</li>
 -  * <li>{@code α} is the <em>shape</em> parameter: this is the Pareto index</li>
 -  * </ul>
 -  *
 -  * @see <a href="http://en.wikipedia.org/wiki/Pareto_distribution">
 -  * Pareto distribution (Wikipedia)</a>
 -  * @see <a href="http://mathworld.wolfram.com/ParetoDistribution.html">
 -  * Pareto distribution (MathWorld)</a>
 -  *
 -  * @since 3.3
 -  */
 - public class ParetoDistribution extends AbstractRealDistribution {
 
-     /** Default inverse cumulative probability accuracy. */
 -     public static final double DEFAULT_INVERSE_ABSOLUTE_ACCURACY = 1e-9;
 
-     /** Serializable version identifier. */
 -     private static final long serialVersionUID = 20130424;
 
-     /** The scale parameter of this distribution. */
 -     private final double scale;
 
-     /** The shape parameter of this distribution. */
 -     private final double shape;
 
-     /** Inverse cumulative probability accuracy. */
 -     private final double solverAbsoluteAccuracy;
 
-     /**
 -      * Create a Pareto distribution with a scale of {@code 1} and a shape of {@code 1}.
 -      */
 -     public ParetoDistribution() {
 -         this(1, 1);
 -     }
 
-     /**
 -      * Create a Pareto distribution using the specified scale and shape.
 -      * <p>
 -      * <b>Note:</b> this constructor will implicitly create an instance of
 -      * {@link Well19937c} as random generator to be used for sampling only (see
 -      * {@link #sample()} and {@link #sample(int)}). In case no sampling is
 -      * needed for the created distribution, it is advised to pass {@code null}
 -      * as random generator via the appropriate constructors to avoid the
 -      * additional initialisation overhead.
 -      *
 -      * @param scale the scale parameter of this distribution
 -      * @param shape the shape parameter of this distribution
 -      * @throws NotStrictlyPositiveException if {@code scale <= 0} or {@code shape <= 0}.
 -      */
 -     public ParetoDistribution(double scale, double shape)
 -         throws NotStrictlyPositiveException {
 -         this(scale, shape, DEFAULT_INVERSE_ABSOLUTE_ACCURACY);
 -     }
 
-     /**
 -      * Create a Pareto distribution using the specified scale, shape and
 -      * inverse cumulative distribution accuracy.
 -      * <p>
 -      * <b>Note:</b> this constructor will implicitly create an instance of
 -      * {@link Well19937c} as random generator to be used for sampling only (see
 -      * {@link #sample()} and {@link #sample(int)}). In case no sampling is
 -      * needed for the created distribution, it is advised to pass {@code null}
 -      * as random generator via the appropriate constructors to avoid the
 -      * additional initialisation overhead.
 -      *
 -      * @param scale the scale parameter of this distribution
 -      * @param shape the shape parameter of this distribution
 -      * @param inverseCumAccuracy Inverse cumulative probability accuracy.
 -      * @throws NotStrictlyPositiveException if {@code scale <= 0} or {@code shape <= 0}.
 -      */
 -     public ParetoDistribution(double scale, double shape, double inverseCumAccuracy)
 -         throws NotStrictlyPositiveException {
 -         this(new Well19937c(), scale, shape, inverseCumAccuracy);
 -     }
 
-     /**
 -      * Creates a Pareto distribution.
 -      *
 -      * @param rng Random number generator.
 -      * @param scale Scale parameter of this distribution.
 -      * @param shape Shape parameter of this distribution.
 -      * @throws NotStrictlyPositiveException if {@code scale <= 0} or {@code shape <= 0}.
 -      */
 -     public ParetoDistribution(RandomGenerator rng, double scale, double shape)
 -         throws NotStrictlyPositiveException {
 -         this(rng, scale, shape, DEFAULT_INVERSE_ABSOLUTE_ACCURACY);
 -     }
 
-     /**
 -      * Creates a Pareto distribution.
 -      *
 -      * @param rng Random number generator.
 -      * @param scale Scale parameter of this distribution.
 -      * @param shape Shape parameter of this distribution.
 -      * @param inverseCumAccuracy Inverse cumulative probability accuracy.
 -      * @throws NotStrictlyPositiveException if {@code scale <= 0} or {@code shape <= 0}.
 -      */
 -     public ParetoDistribution(RandomGenerator rng,
 -                               double scale,
 -                               double shape,
 -                               double inverseCumAccuracy)
 -         throws NotStrictlyPositiveException {
 -         super(rng);
 
-         if (scale <= 0) {
 -             throw new NotStrictlyPositiveException(LocalizedFormats.SCALE, scale);
 -         }
 
-         if (shape <= 0) {
 -             throw new NotStrictlyPositiveException(LocalizedFormats.SHAPE, shape);
 -         }
 
-         this.scale = scale;
 -         this.shape = shape;
 -         this.solverAbsoluteAccuracy = inverseCumAccuracy;
 -     }
 
-     /**
 -      * Returns the scale parameter of this distribution.
 -      *
 -      * @return the scale parameter
 -      */
 -     public double getScale() {
 -         return scale;
 -     }
 
-     /**
 -      * Returns the shape parameter of this distribution.
 -      *
 -      * @return the shape parameter
 -      */
 -     public double getShape() {
 -         return shape;
 -     }
 
-     /**
 -      * {@inheritDoc}
 -      * <p>
 -      * For scale {@code k}, and shape {@code α} of this distribution, the PDF
 -      * is given by
 -      * <ul>
 -      * <li>{@code 0} if {@code x < k},</li>
 -      * <li>{@code α * k^α / x^(α + 1)} otherwise.</li>
 -      * </ul>
 -      */
 -     public double density(double x) {
 -         if (x < scale) {
 -             return 0;
 -         }
 -         return FastMath.pow(scale, shape) / FastMath.pow(x, shape + 1) * shape;
 -     }
 
-     /** {@inheritDoc}
 -      *
 -      * See documentation of {@link #density(double)} for computation details.
 -      */
 -     @Override
 -     public double logDensity(double x) {
 -         if (x < scale) {
 -             return Double.NEGATIVE_INFINITY;
 -         }
 -         return FastMath.log(scale) * shape - FastMath.log(x) * (shape + 1) + FastMath.log(shape);
 -     }
 
-     /**
 -      * {@inheritDoc}
 -      * <p>
 -      * For scale {@code k}, and shape {@code α} of this distribution, the CDF is given by
 -      * <ul>
 -      * <li>{@code 0} if {@code x < k},</li>
 -      * <li>{@code 1 - (k / x)^α} otherwise.</li>
 -      * </ul>
 -      */
 -     public double cumulativeProbability(double x)  {
 -         if (x <= scale) {
 -             return 0;
 -         }
 -         return 1 - FastMath.pow(scale / x, shape);
 -     }
 
-     /**
 -      * {@inheritDoc}
 -      *
 -      * @deprecated See {@link RealDistribution#cumulativeProbability(double,double)}
 -      */
 -     @Override
 -     @Deprecated
 -     public double cumulativeProbability(double x0, double x1)
 -         throws NumberIsTooLargeException {
 -         return probability(x0, x1);
 -     }
 
-     /** {@inheritDoc} */
 -     @Override
 -     protected double getSolverAbsoluteAccuracy() {
 -         return solverAbsoluteAccuracy;
 -     }
 
-     /**
 -      * {@inheritDoc}
 -      * <p>
 -      * For scale {@code k} and shape {@code α}, the mean is given by
 -      * <ul>
 -      * <li>{@code ∞} if {@code α <= 1},</li>
 -      * <li>{@code α * k / (α - 1)} otherwise.</li>
 -      * </ul>
 -      */
 -     public double getNumericalMean() {
 -         if (shape <= 1) {
 -             return Double.POSITIVE_INFINITY;
 -         }
 -         return shape * scale / (shape - 1);
 -     }
 
-     /**
 -      * {@inheritDoc}
 -      * <p>
 -      * For scale {@code k} and shape {@code α}, the variance is given by
 -      * <ul>
 -      * <li>{@code ∞} if {@code 1 < α <= 2},</li>
 -      * <li>{@code k^2 * α / ((α - 1)^2 * (α - 2))} otherwise.</li>
 -      * </ul>
 -      */
 -     public double getNumericalVariance() {
 -         if (shape <= 2) {
 -             return Double.POSITIVE_INFINITY;
 -         }
 -         double s = shape - 1;
 -         return scale * scale * shape / (s * s) / (shape - 2);
 -     }
 
-     /**
 -      * {@inheritDoc}
 -      * <p>
 -      * The lower bound of the support is equal to the scale parameter {@code k}.
 -      *
 -      * @return lower bound of the support
 -      */
 -     public double getSupportLowerBound() {
 -         return scale;
 -     }
 
-     /**
 -      * {@inheritDoc}
 -      * <p>
 -      * The upper bound of the support is always positive infinity no matter the parameters.
 -      *
 -      * @return upper bound of the support (always {@code Double.POSITIVE_INFINITY})
 -      */
 -     public double getSupportUpperBound() {
 -         return Double.POSITIVE_INFINITY;
 -     }
 
-     /** {@inheritDoc} */
 -     public boolean isSupportLowerBoundInclusive() {
 -         return true;
 -     }
 
-     /** {@inheritDoc} */
 -     public boolean isSupportUpperBoundInclusive() {
 -         return false;
 -     }
 
-     /**
 -      * {@inheritDoc}
 -      * <p>
 -      * The support of this distribution is connected.
 -      *
 -      * @return {@code true}
 -      */
 -     public boolean isSupportConnected() {
 -         return true;
 -     }
 
-     /** {@inheritDoc} */
 -     @Override
 -     public double sample()  {
 -         final double n = random.nextDouble();
 -         return scale / FastMath.pow(n, 1 / shape);
 -     }
 - }