NakagamiDistribution.java
- /*
 -  * Licensed to the Apache Software Foundation (ASF) under one or more
 -  * contributor license agreements.  See the NOTICE file distributed with
 -  * this work for additional information regarding copyright ownership.
 -  * The ASF licenses this file to You under the Apache License, Version 2.0
 -  * (the "License"); you may not use this file except in compliance with
 -  * the License.  You may obtain a copy of the License at
 -  *
 -  *      http://www.apache.org/licenses/LICENSE-2.0
 -  *
 -  * Unless required by applicable law or agreed to in writing, software
 -  * distributed under the License is distributed on an "AS IS" BASIS,
 -  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 -  * See the License for the specific language governing permissions and
 -  * limitations under the License.
 -  */
 - package org.apache.commons.math3.distribution;
 
- import org.apache.commons.math3.exception.NotStrictlyPositiveException;
 - import org.apache.commons.math3.exception.NumberIsTooSmallException;
 - import org.apache.commons.math3.exception.util.LocalizedFormats;
 - import org.apache.commons.math3.random.RandomGenerator;
 - import org.apache.commons.math3.random.Well19937c;
 - import org.apache.commons.math3.special.Gamma;
 - import org.apache.commons.math3.util.FastMath;
 
- /**
 -  * This class implements the Nakagami distribution.
 -  *
 -  * @see <a href="http://en.wikipedia.org/wiki/Nakagami_distribution">Nakagami Distribution (Wikipedia)</a>
 -  *
 -  * @since 3.4
 -  */
 - public class NakagamiDistribution extends AbstractRealDistribution {
 
-     /** Default inverse cumulative probability accuracy. */
 -     public static final double DEFAULT_INVERSE_ABSOLUTE_ACCURACY = 1e-9;
 
-     /** Serializable version identifier. */
 -     private static final long serialVersionUID = 20141003;
 
-     /** The shape parameter. */
 -     private final double mu;
 -     /** The scale parameter. */
 -     private final double omega;
 -     /** Inverse cumulative probability accuracy. */
 -     private final double inverseAbsoluteAccuracy;
 
-     /**
 -      * Build a new instance.
 -      * <p>
 -      * <b>Note:</b> this constructor will implicitly create an instance of
 -      * {@link Well19937c} as random generator to be used for sampling only (see
 -      * {@link #sample()} and {@link #sample(int)}). In case no sampling is
 -      * needed for the created distribution, it is advised to pass {@code null}
 -      * as random generator via the appropriate constructors to avoid the
 -      * additional initialisation overhead.
 -      *
 -      * @param mu shape parameter
 -      * @param omega scale parameter (must be positive)
 -      * @throws NumberIsTooSmallException if {@code mu < 0.5}
 -      * @throws NotStrictlyPositiveException if {@code omega <= 0}
 -      */
 -     public NakagamiDistribution(double mu, double omega) {
 -         this(mu, omega, DEFAULT_INVERSE_ABSOLUTE_ACCURACY);
 -     }
 
-     /**
 -      * Build a new instance.
 -      * <p>
 -      * <b>Note:</b> this constructor will implicitly create an instance of
 -      * {@link Well19937c} as random generator to be used for sampling only (see
 -      * {@link #sample()} and {@link #sample(int)}). In case no sampling is
 -      * needed for the created distribution, it is advised to pass {@code null}
 -      * as random generator via the appropriate constructors to avoid the
 -      * additional initialisation overhead.
 -      *
 -      * @param mu shape parameter
 -      * @param omega scale parameter (must be positive)
 -      * @param inverseAbsoluteAccuracy the maximum absolute error in inverse
 -      * cumulative probability estimates (defaults to {@link #DEFAULT_INVERSE_ABSOLUTE_ACCURACY}).
 -      * @throws NumberIsTooSmallException if {@code mu < 0.5}
 -      * @throws NotStrictlyPositiveException if {@code omega <= 0}
 -      */
 -     public NakagamiDistribution(double mu, double omega, double inverseAbsoluteAccuracy) {
 -         this(new Well19937c(), mu, omega, inverseAbsoluteAccuracy);
 -     }
 
-     /**
 -      * Build a new instance.
 -      *
 -      * @param rng Random number generator
 -      * @param mu shape parameter
 -      * @param omega scale parameter (must be positive)
 -      * @param inverseAbsoluteAccuracy the maximum absolute error in inverse
 -      * cumulative probability estimates (defaults to {@link #DEFAULT_INVERSE_ABSOLUTE_ACCURACY}).
 -      * @throws NumberIsTooSmallException if {@code mu < 0.5}
 -      * @throws NotStrictlyPositiveException if {@code omega <= 0}
 -      */
 -     public NakagamiDistribution(RandomGenerator rng, double mu, double omega, double inverseAbsoluteAccuracy) {
 -         super(rng);
 
-         if (mu < 0.5) {
 -             throw new NumberIsTooSmallException(mu, 0.5, true);
 -         }
 -         if (omega <= 0) {
 -             throw new NotStrictlyPositiveException(LocalizedFormats.NOT_POSITIVE_SCALE, omega);
 -         }
 
-         this.mu = mu;
 -         this.omega = omega;
 -         this.inverseAbsoluteAccuracy = inverseAbsoluteAccuracy;
 -     }
 
-     /**
 -      * Access the shape parameter, {@code mu}.
 -      *
 -      * @return the shape parameter.
 -      */
 -     public double getShape() {
 -         return mu;
 -     }
 
-     /**
 -      * Access the scale parameter, {@code omega}.
 -      *
 -      * @return the scale parameter.
 -      */
 -     public double getScale() {
 -         return omega;
 -     }
 
-     @Override
 -     protected double getSolverAbsoluteAccuracy() {
 -         return inverseAbsoluteAccuracy;
 -     }
 
-     /** {@inheritDoc} */
 -     public double density(double x) {
 -         if (x <= 0) {
 -             return 0.0;
 -         }
 -         return 2.0 * FastMath.pow(mu, mu) / (Gamma.gamma(mu) * FastMath.pow(omega, mu)) *
 -                      FastMath.pow(x, 2 * mu - 1) * FastMath.exp(-mu * x * x / omega);
 -     }
 
-     /** {@inheritDoc} */
 -     public double cumulativeProbability(double x) {
 -         return Gamma.regularizedGammaP(mu, mu * x * x / omega);
 -     }
 
-     /** {@inheritDoc} */
 -     public double getNumericalMean() {
 -         return Gamma.gamma(mu + 0.5) / Gamma.gamma(mu) * FastMath.sqrt(omega / mu);
 -     }
 
-     /** {@inheritDoc} */
 -     public double getNumericalVariance() {
 -         double v = Gamma.gamma(mu + 0.5) / Gamma.gamma(mu);
 -         return omega * (1 - 1 / mu * v * v);
 -     }
 
-     /** {@inheritDoc} */
 -     public double getSupportLowerBound() {
 -         return 0;
 -     }
 
-     /** {@inheritDoc} */
 -     public double getSupportUpperBound() {
 -         return Double.POSITIVE_INFINITY;
 -     }
 
-     /** {@inheritDoc} */
 -     public boolean isSupportLowerBoundInclusive() {
 -         return true;
 -     }
 
-     /** {@inheritDoc} */
 -     public boolean isSupportUpperBoundInclusive() {
 -         return false;
 -     }
 
-     /** {@inheritDoc} */
 -     public boolean isSupportConnected() {
 -         return true;
 -     }
 
- }