LogNormalDistribution.java
- /*
- * Licensed to the Apache Software Foundation (ASF) under one or more
- * contributor license agreements. See the NOTICE file distributed with
- * this work for additional information regarding copyright ownership.
- * The ASF licenses this file to You under the Apache License, Version 2.0
- * (the "License"); you may not use this file except in compliance with
- * the License. You may obtain a copy of the License at
- *
- * http://www.apache.org/licenses/LICENSE-2.0
- *
- * Unless required by applicable law or agreed to in writing, software
- * distributed under the License is distributed on an "AS IS" BASIS,
- * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- * See the License for the specific language governing permissions and
- * limitations under the License.
- */
- package org.apache.commons.math3.distribution;
- import org.apache.commons.math3.exception.NotStrictlyPositiveException;
- import org.apache.commons.math3.exception.NumberIsTooLargeException;
- import org.apache.commons.math3.exception.util.LocalizedFormats;
- import org.apache.commons.math3.random.RandomGenerator;
- import org.apache.commons.math3.random.Well19937c;
- import org.apache.commons.math3.special.Erf;
- import org.apache.commons.math3.util.FastMath;
- /**
- * Implementation of the log-normal (gaussian) distribution.
- *
- * <p>
- * <strong>Parameters:</strong>
- * {@code X} is log-normally distributed if its natural logarithm {@code log(X)}
- * is normally distributed. The probability distribution function of {@code X}
- * is given by (for {@code x > 0})
- * </p>
- * <p>
- * {@code exp(-0.5 * ((ln(x) - m) / s)^2) / (s * sqrt(2 * pi) * x)}
- * </p>
- * <ul>
- * <li>{@code m} is the <em>scale</em> parameter: this is the mean of the
- * normally distributed natural logarithm of this distribution,</li>
- * <li>{@code s} is the <em>shape</em> parameter: this is the standard
- * deviation of the normally distributed natural logarithm of this
- * distribution.
- * </ul>
- *
- * @see <a href="http://en.wikipedia.org/wiki/Log-normal_distribution">
- * Log-normal distribution (Wikipedia)</a>
- * @see <a href="http://mathworld.wolfram.com/LogNormalDistribution.html">
- * Log Normal distribution (MathWorld)</a>
- *
- * @since 3.0
- */
- public class LogNormalDistribution extends AbstractRealDistribution {
- /** Default inverse cumulative probability accuracy. */
- public static final double DEFAULT_INVERSE_ABSOLUTE_ACCURACY = 1e-9;
- /** Serializable version identifier. */
- private static final long serialVersionUID = 20120112;
- /** √(2 π) */
- private static final double SQRT2PI = FastMath.sqrt(2 * FastMath.PI);
- /** √(2) */
- private static final double SQRT2 = FastMath.sqrt(2.0);
- /** The scale parameter of this distribution. */
- private final double scale;
- /** The shape parameter of this distribution. */
- private final double shape;
- /** The value of {@code log(shape) + 0.5 * log(2*PI)} stored for faster computation. */
- private final double logShapePlusHalfLog2Pi;
- /** Inverse cumulative probability accuracy. */
- private final double solverAbsoluteAccuracy;
- /**
- * Create a log-normal distribution, where the mean and standard deviation
- * of the {@link NormalDistribution normally distributed} natural
- * logarithm of the log-normal distribution are equal to zero and one
- * respectively. In other words, the scale of the returned distribution is
- * {@code 0}, while its shape is {@code 1}.
- * <p>
- * <b>Note:</b> this constructor will implicitly create an instance of
- * {@link Well19937c} as random generator to be used for sampling only (see
- * {@link #sample()} and {@link #sample(int)}). In case no sampling is
- * needed for the created distribution, it is advised to pass {@code null}
- * as random generator via the appropriate constructors to avoid the
- * additional initialisation overhead.
- */
- public LogNormalDistribution() {
- this(0, 1);
- }
- /**
- * Create a log-normal distribution using the specified scale and shape.
- * <p>
- * <b>Note:</b> this constructor will implicitly create an instance of
- * {@link Well19937c} as random generator to be used for sampling only (see
- * {@link #sample()} and {@link #sample(int)}). In case no sampling is
- * needed for the created distribution, it is advised to pass {@code null}
- * as random generator via the appropriate constructors to avoid the
- * additional initialisation overhead.
- *
- * @param scale the scale parameter of this distribution
- * @param shape the shape parameter of this distribution
- * @throws NotStrictlyPositiveException if {@code shape <= 0}.
- */
- public LogNormalDistribution(double scale, double shape)
- throws NotStrictlyPositiveException {
- this(scale, shape, DEFAULT_INVERSE_ABSOLUTE_ACCURACY);
- }
- /**
- * Create a log-normal distribution using the specified scale, shape and
- * inverse cumulative distribution accuracy.
- * <p>
- * <b>Note:</b> this constructor will implicitly create an instance of
- * {@link Well19937c} as random generator to be used for sampling only (see
- * {@link #sample()} and {@link #sample(int)}). In case no sampling is
- * needed for the created distribution, it is advised to pass {@code null}
- * as random generator via the appropriate constructors to avoid the
- * additional initialisation overhead.
- *
- * @param scale the scale parameter of this distribution
- * @param shape the shape parameter of this distribution
- * @param inverseCumAccuracy Inverse cumulative probability accuracy.
- * @throws NotStrictlyPositiveException if {@code shape <= 0}.
- */
- public LogNormalDistribution(double scale, double shape, double inverseCumAccuracy)
- throws NotStrictlyPositiveException {
- this(new Well19937c(), scale, shape, inverseCumAccuracy);
- }
- /**
- * Creates a log-normal distribution.
- *
- * @param rng Random number generator.
- * @param scale Scale parameter of this distribution.
- * @param shape Shape parameter of this distribution.
- * @throws NotStrictlyPositiveException if {@code shape <= 0}.
- * @since 3.3
- */
- public LogNormalDistribution(RandomGenerator rng, double scale, double shape)
- throws NotStrictlyPositiveException {
- this(rng, scale, shape, DEFAULT_INVERSE_ABSOLUTE_ACCURACY);
- }
- /**
- * Creates a log-normal distribution.
- *
- * @param rng Random number generator.
- * @param scale Scale parameter of this distribution.
- * @param shape Shape parameter of this distribution.
- * @param inverseCumAccuracy Inverse cumulative probability accuracy.
- * @throws NotStrictlyPositiveException if {@code shape <= 0}.
- * @since 3.1
- */
- public LogNormalDistribution(RandomGenerator rng,
- double scale,
- double shape,
- double inverseCumAccuracy)
- throws NotStrictlyPositiveException {
- super(rng);
- if (shape <= 0) {
- throw new NotStrictlyPositiveException(LocalizedFormats.SHAPE, shape);
- }
- this.scale = scale;
- this.shape = shape;
- this.logShapePlusHalfLog2Pi = FastMath.log(shape) + 0.5 * FastMath.log(2 * FastMath.PI);
- this.solverAbsoluteAccuracy = inverseCumAccuracy;
- }
- /**
- * Returns the scale parameter of this distribution.
- *
- * @return the scale parameter
- */
- public double getScale() {
- return scale;
- }
- /**
- * Returns the shape parameter of this distribution.
- *
- * @return the shape parameter
- */
- public double getShape() {
- return shape;
- }
- /**
- * {@inheritDoc}
- *
- * For scale {@code m}, and shape {@code s} of this distribution, the PDF
- * is given by
- * <ul>
- * <li>{@code 0} if {@code x <= 0},</li>
- * <li>{@code exp(-0.5 * ((ln(x) - m) / s)^2) / (s * sqrt(2 * pi) * x)}
- * otherwise.</li>
- * </ul>
- */
- public double density(double x) {
- if (x <= 0) {
- return 0;
- }
- final double x0 = FastMath.log(x) - scale;
- final double x1 = x0 / shape;
- return FastMath.exp(-0.5 * x1 * x1) / (shape * SQRT2PI * x);
- }
- /** {@inheritDoc}
- *
- * See documentation of {@link #density(double)} for computation details.
- */
- @Override
- public double logDensity(double x) {
- if (x <= 0) {
- return Double.NEGATIVE_INFINITY;
- }
- final double logX = FastMath.log(x);
- final double x0 = logX - scale;
- final double x1 = x0 / shape;
- return -0.5 * x1 * x1 - (logShapePlusHalfLog2Pi + logX);
- }
- /**
- * {@inheritDoc}
- *
- * For scale {@code m}, and shape {@code s} of this distribution, the CDF
- * is given by
- * <ul>
- * <li>{@code 0} if {@code x <= 0},</li>
- * <li>{@code 0} if {@code ln(x) - m < 0} and {@code m - ln(x) > 40 * s}, as
- * in these cases the actual value is within {@code Double.MIN_VALUE} of 0,
- * <li>{@code 1} if {@code ln(x) - m >= 0} and {@code ln(x) - m > 40 * s},
- * as in these cases the actual value is within {@code Double.MIN_VALUE} of
- * 1,</li>
- * <li>{@code 0.5 + 0.5 * erf((ln(x) - m) / (s * sqrt(2))} otherwise.</li>
- * </ul>
- */
- public double cumulativeProbability(double x) {
- if (x <= 0) {
- return 0;
- }
- final double dev = FastMath.log(x) - scale;
- if (FastMath.abs(dev) > 40 * shape) {
- return dev < 0 ? 0.0d : 1.0d;
- }
- return 0.5 + 0.5 * Erf.erf(dev / (shape * SQRT2));
- }
- /**
- * {@inheritDoc}
- *
- * @deprecated See {@link RealDistribution#cumulativeProbability(double,double)}
- */
- @Override@Deprecated
- public double cumulativeProbability(double x0, double x1)
- throws NumberIsTooLargeException {
- return probability(x0, x1);
- }
- /** {@inheritDoc} */
- @Override
- public double probability(double x0,
- double x1)
- throws NumberIsTooLargeException {
- if (x0 > x1) {
- throw new NumberIsTooLargeException(LocalizedFormats.LOWER_ENDPOINT_ABOVE_UPPER_ENDPOINT,
- x0, x1, true);
- }
- if (x0 <= 0 || x1 <= 0) {
- return super.probability(x0, x1);
- }
- final double denom = shape * SQRT2;
- final double v0 = (FastMath.log(x0) - scale) / denom;
- final double v1 = (FastMath.log(x1) - scale) / denom;
- return 0.5 * Erf.erf(v0, v1);
- }
- /** {@inheritDoc} */
- @Override
- protected double getSolverAbsoluteAccuracy() {
- return solverAbsoluteAccuracy;
- }
- /**
- * {@inheritDoc}
- *
- * For scale {@code m} and shape {@code s}, the mean is
- * {@code exp(m + s^2 / 2)}.
- */
- public double getNumericalMean() {
- double s = shape;
- return FastMath.exp(scale + (s * s / 2));
- }
- /**
- * {@inheritDoc}
- *
- * For scale {@code m} and shape {@code s}, the variance is
- * {@code (exp(s^2) - 1) * exp(2 * m + s^2)}.
- */
- public double getNumericalVariance() {
- final double s = shape;
- final double ss = s * s;
- return (FastMath.expm1(ss)) * FastMath.exp(2 * scale + ss);
- }
- /**
- * {@inheritDoc}
- *
- * The lower bound of the support is always 0 no matter the parameters.
- *
- * @return lower bound of the support (always 0)
- */
- public double getSupportLowerBound() {
- return 0;
- }
- /**
- * {@inheritDoc}
- *
- * The upper bound of the support is always positive infinity
- * no matter the parameters.
- *
- * @return upper bound of the support (always
- * {@code Double.POSITIVE_INFINITY})
- */
- public double getSupportUpperBound() {
- return Double.POSITIVE_INFINITY;
- }
- /** {@inheritDoc} */
- public boolean isSupportLowerBoundInclusive() {
- return true;
- }
- /** {@inheritDoc} */
- public boolean isSupportUpperBoundInclusive() {
- return false;
- }
- /**
- * {@inheritDoc}
- *
- * The support of this distribution is connected.
- *
- * @return {@code true}
- */
- public boolean isSupportConnected() {
- return true;
- }
- /** {@inheritDoc} */
- @Override
- public double sample() {
- final double n = random.nextGaussian();
- return FastMath.exp(scale + shape * n);
- }
- }