ExponentialDistribution.java
- /*
- * Licensed to the Apache Software Foundation (ASF) under one or more
- * contributor license agreements. See the NOTICE file distributed with
- * this work for additional information regarding copyright ownership.
- * The ASF licenses this file to You under the Apache License, Version 2.0
- * (the "License"); you may not use this file except in compliance with
- * the License. You may obtain a copy of the License at
- *
- * http://www.apache.org/licenses/LICENSE-2.0
- *
- * Unless required by applicable law or agreed to in writing, software
- * distributed under the License is distributed on an "AS IS" BASIS,
- * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- * See the License for the specific language governing permissions and
- * limitations under the License.
- */
- package org.apache.commons.math3.distribution;
- import org.apache.commons.math3.exception.NotStrictlyPositiveException;
- import org.apache.commons.math3.exception.OutOfRangeException;
- import org.apache.commons.math3.exception.util.LocalizedFormats;
- import org.apache.commons.math3.random.RandomGenerator;
- import org.apache.commons.math3.random.Well19937c;
- import org.apache.commons.math3.util.CombinatoricsUtils;
- import org.apache.commons.math3.util.FastMath;
- import org.apache.commons.math3.util.ResizableDoubleArray;
- /**
- * Implementation of the exponential distribution.
- *
- * @see <a href="http://en.wikipedia.org/wiki/Exponential_distribution">Exponential distribution (Wikipedia)</a>
- * @see <a href="http://mathworld.wolfram.com/ExponentialDistribution.html">Exponential distribution (MathWorld)</a>
- */
- public class ExponentialDistribution extends AbstractRealDistribution {
- /**
- * Default inverse cumulative probability accuracy.
- * @since 2.1
- */
- public static final double DEFAULT_INVERSE_ABSOLUTE_ACCURACY = 1e-9;
- /** Serializable version identifier */
- private static final long serialVersionUID = 2401296428283614780L;
- /**
- * Used when generating Exponential samples.
- * Table containing the constants
- * q_i = sum_{j=1}^i (ln 2)^j/j! = ln 2 + (ln 2)^2/2 + ... + (ln 2)^i/i!
- * until the largest representable fraction below 1 is exceeded.
- *
- * Note that
- * 1 = 2 - 1 = exp(ln 2) - 1 = sum_{n=1}^infty (ln 2)^n / n!
- * thus q_i -> 1 as i -> +inf,
- * so the higher i, the closer to one we get (the series is not alternating).
- *
- * By trying, n = 16 in Java is enough to reach 1.0.
- */
- private static final double[] EXPONENTIAL_SA_QI;
- /** The mean of this distribution. */
- private final double mean;
- /** The logarithm of the mean, stored to reduce computing time. **/
- private final double logMean;
- /** Inverse cumulative probability accuracy. */
- private final double solverAbsoluteAccuracy;
- /**
- * Initialize tables.
- */
- static {
- /**
- * Filling EXPONENTIAL_SA_QI table.
- * Note that we don't want qi = 0 in the table.
- */
- final double LN2 = FastMath.log(2);
- double qi = 0;
- int i = 1;
- /**
- * ArithmeticUtils provides factorials up to 20, so let's use that
- * limit together with Precision.EPSILON to generate the following
- * code (a priori, we know that there will be 16 elements, but it is
- * better to not hardcode it).
- */
- final ResizableDoubleArray ra = new ResizableDoubleArray(20);
- while (qi < 1) {
- qi += FastMath.pow(LN2, i) / CombinatoricsUtils.factorial(i);
- ra.addElement(qi);
- ++i;
- }
- EXPONENTIAL_SA_QI = ra.getElements();
- }
- /**
- * Create an exponential distribution with the given mean.
- * <p>
- * <b>Note:</b> this constructor will implicitly create an instance of
- * {@link Well19937c} as random generator to be used for sampling only (see
- * {@link #sample()} and {@link #sample(int)}). In case no sampling is
- * needed for the created distribution, it is advised to pass {@code null}
- * as random generator via the appropriate constructors to avoid the
- * additional initialisation overhead.
- *
- * @param mean mean of this distribution.
- */
- public ExponentialDistribution(double mean) {
- this(mean, DEFAULT_INVERSE_ABSOLUTE_ACCURACY);
- }
- /**
- * Create an exponential distribution with the given mean.
- * <p>
- * <b>Note:</b> this constructor will implicitly create an instance of
- * {@link Well19937c} as random generator to be used for sampling only (see
- * {@link #sample()} and {@link #sample(int)}). In case no sampling is
- * needed for the created distribution, it is advised to pass {@code null}
- * as random generator via the appropriate constructors to avoid the
- * additional initialisation overhead.
- *
- * @param mean Mean of this distribution.
- * @param inverseCumAccuracy Maximum absolute error in inverse
- * cumulative probability estimates (defaults to
- * {@link #DEFAULT_INVERSE_ABSOLUTE_ACCURACY}).
- * @throws NotStrictlyPositiveException if {@code mean <= 0}.
- * @since 2.1
- */
- public ExponentialDistribution(double mean, double inverseCumAccuracy) {
- this(new Well19937c(), mean, inverseCumAccuracy);
- }
- /**
- * Creates an exponential distribution.
- *
- * @param rng Random number generator.
- * @param mean Mean of this distribution.
- * @throws NotStrictlyPositiveException if {@code mean <= 0}.
- * @since 3.3
- */
- public ExponentialDistribution(RandomGenerator rng, double mean)
- throws NotStrictlyPositiveException {
- this(rng, mean, DEFAULT_INVERSE_ABSOLUTE_ACCURACY);
- }
- /**
- * Creates an exponential distribution.
- *
- * @param rng Random number generator.
- * @param mean Mean of this distribution.
- * @param inverseCumAccuracy Maximum absolute error in inverse
- * cumulative probability estimates (defaults to
- * {@link #DEFAULT_INVERSE_ABSOLUTE_ACCURACY}).
- * @throws NotStrictlyPositiveException if {@code mean <= 0}.
- * @since 3.1
- */
- public ExponentialDistribution(RandomGenerator rng,
- double mean,
- double inverseCumAccuracy)
- throws NotStrictlyPositiveException {
- super(rng);
- if (mean <= 0) {
- throw new NotStrictlyPositiveException(LocalizedFormats.MEAN, mean);
- }
- this.mean = mean;
- logMean = FastMath.log(mean);
- solverAbsoluteAccuracy = inverseCumAccuracy;
- }
- /**
- * Access the mean.
- *
- * @return the mean.
- */
- public double getMean() {
- return mean;
- }
- /** {@inheritDoc} */
- public double density(double x) {
- final double logDensity = logDensity(x);
- return logDensity == Double.NEGATIVE_INFINITY ? 0 : FastMath.exp(logDensity);
- }
- /** {@inheritDoc} **/
- @Override
- public double logDensity(double x) {
- if (x < 0) {
- return Double.NEGATIVE_INFINITY;
- }
- return -x / mean - logMean;
- }
- /**
- * {@inheritDoc}
- *
- * The implementation of this method is based on:
- * <ul>
- * <li>
- * <a href="http://mathworld.wolfram.com/ExponentialDistribution.html">
- * Exponential Distribution</a>, equation (1).</li>
- * </ul>
- */
- public double cumulativeProbability(double x) {
- double ret;
- if (x <= 0.0) {
- ret = 0.0;
- } else {
- ret = 1.0 - FastMath.exp(-x / mean);
- }
- return ret;
- }
- /**
- * {@inheritDoc}
- *
- * Returns {@code 0} when {@code p= = 0} and
- * {@code Double.POSITIVE_INFINITY} when {@code p == 1}.
- */
- @Override
- public double inverseCumulativeProbability(double p) throws OutOfRangeException {
- double ret;
- if (p < 0.0 || p > 1.0) {
- throw new OutOfRangeException(p, 0.0, 1.0);
- } else if (p == 1.0) {
- ret = Double.POSITIVE_INFINITY;
- } else {
- ret = -mean * FastMath.log(1.0 - p);
- }
- return ret;
- }
- /**
- * {@inheritDoc}
- *
- * <p><strong>Algorithm Description</strong>: this implementation uses the
- * <a href="http://www.jesus.ox.ac.uk/~clifford/a5/chap1/node5.html">
- * Inversion Method</a> to generate exponentially distributed random values
- * from uniform deviates.</p>
- *
- * @return a random value.
- * @since 2.2
- */
- @Override
- public double sample() {
- // Step 1:
- double a = 0;
- double u = random.nextDouble();
- // Step 2 and 3:
- while (u < 0.5) {
- a += EXPONENTIAL_SA_QI[0];
- u *= 2;
- }
- // Step 4 (now u >= 0.5):
- u += u - 1;
- // Step 5:
- if (u <= EXPONENTIAL_SA_QI[0]) {
- return mean * (a + u);
- }
- // Step 6:
- int i = 0; // Should be 1, be we iterate before it in while using 0
- double u2 = random.nextDouble();
- double umin = u2;
- // Step 7 and 8:
- do {
- ++i;
- u2 = random.nextDouble();
- if (u2 < umin) {
- umin = u2;
- }
- // Step 8:
- } while (u > EXPONENTIAL_SA_QI[i]); // Ensured to exit since EXPONENTIAL_SA_QI[MAX] = 1
- return mean * (a + umin * EXPONENTIAL_SA_QI[0]);
- }
- /** {@inheritDoc} */
- @Override
- protected double getSolverAbsoluteAccuracy() {
- return solverAbsoluteAccuracy;
- }
- /**
- * {@inheritDoc}
- *
- * For mean parameter {@code k}, the mean is {@code k}.
- */
- public double getNumericalMean() {
- return getMean();
- }
- /**
- * {@inheritDoc}
- *
- * For mean parameter {@code k}, the variance is {@code k^2}.
- */
- public double getNumericalVariance() {
- final double m = getMean();
- return m * m;
- }
- /**
- * {@inheritDoc}
- *
- * The lower bound of the support is always 0 no matter the mean parameter.
- *
- * @return lower bound of the support (always 0)
- */
- public double getSupportLowerBound() {
- return 0;
- }
- /**
- * {@inheritDoc}
- *
- * The upper bound of the support is always positive infinity
- * no matter the mean parameter.
- *
- * @return upper bound of the support (always Double.POSITIVE_INFINITY)
- */
- public double getSupportUpperBound() {
- return Double.POSITIVE_INFINITY;
- }
- /** {@inheritDoc} */
- public boolean isSupportLowerBoundInclusive() {
- return true;
- }
- /** {@inheritDoc} */
- public boolean isSupportUpperBoundInclusive() {
- return false;
- }
- /**
- * {@inheritDoc}
- *
- * The support of this distribution is connected.
- *
- * @return {@code true}
- */
- public boolean isSupportConnected() {
- return true;
- }
- }