EnumeratedIntegerDistribution.java
- /*
- * Licensed to the Apache Software Foundation (ASF) under one or more
- * contributor license agreements. See the NOTICE file distributed with
- * this work for additional information regarding copyright ownership.
- * The ASF licenses this file to You under the Apache License, Version 2.0
- * (the "License"); you may not use this file except in compliance with
- * the License. You may obtain a copy of the License at
- *
- * http://www.apache.org/licenses/LICENSE-2.0
- *
- * Unless required by applicable law or agreed to in writing, software
- * distributed under the License is distributed on an "AS IS" BASIS,
- * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- * See the License for the specific language governing permissions and
- * limitations under the License.
- */
- package org.apache.commons.math3.distribution;
- import java.util.ArrayList;
- import java.util.List;
- import org.apache.commons.math3.exception.DimensionMismatchException;
- import org.apache.commons.math3.exception.MathArithmeticException;
- import org.apache.commons.math3.exception.NotANumberException;
- import org.apache.commons.math3.exception.NotFiniteNumberException;
- import org.apache.commons.math3.exception.NotPositiveException;
- import org.apache.commons.math3.random.RandomGenerator;
- import org.apache.commons.math3.random.Well19937c;
- import org.apache.commons.math3.util.Pair;
- /**
- * <p>Implementation of an integer-valued {@link EnumeratedDistribution}.</p>
- *
- * <p>Values with zero-probability are allowed but they do not extend the
- * support.<br/>
- * Duplicate values are allowed. Probabilities of duplicate values are combined
- * when computing cumulative probabilities and statistics.</p>
- *
- * @since 3.2
- */
- public class EnumeratedIntegerDistribution extends AbstractIntegerDistribution {
- /** Serializable UID. */
- private static final long serialVersionUID = 20130308L;
- /**
- * {@link EnumeratedDistribution} instance (using the {@link Integer} wrapper)
- * used to generate the pmf.
- */
- protected final EnumeratedDistribution<Integer> innerDistribution;
- /**
- * Create a discrete distribution using the given probability mass function
- * definition.
- * <p>
- * <b>Note:</b> this constructor will implicitly create an instance of
- * {@link Well19937c} as random generator to be used for sampling only (see
- * {@link #sample()} and {@link #sample(int)}). In case no sampling is
- * needed for the created distribution, it is advised to pass {@code null}
- * as random generator via the appropriate constructors to avoid the
- * additional initialisation overhead.
- *
- * @param singletons array of random variable values.
- * @param probabilities array of probabilities.
- * @throws DimensionMismatchException if
- * {@code singletons.length != probabilities.length}
- * @throws NotPositiveException if any of the probabilities are negative.
- * @throws NotFiniteNumberException if any of the probabilities are infinite.
- * @throws NotANumberException if any of the probabilities are NaN.
- * @throws MathArithmeticException all of the probabilities are 0.
- */
- public EnumeratedIntegerDistribution(final int[] singletons, final double[] probabilities)
- throws DimensionMismatchException, NotPositiveException, MathArithmeticException,
- NotFiniteNumberException, NotANumberException{
- this(new Well19937c(), singletons, probabilities);
- }
- /**
- * Create a discrete distribution using the given random number generator
- * and probability mass function definition.
- *
- * @param rng random number generator.
- * @param singletons array of random variable values.
- * @param probabilities array of probabilities.
- * @throws DimensionMismatchException if
- * {@code singletons.length != probabilities.length}
- * @throws NotPositiveException if any of the probabilities are negative.
- * @throws NotFiniteNumberException if any of the probabilities are infinite.
- * @throws NotANumberException if any of the probabilities are NaN.
- * @throws MathArithmeticException all of the probabilities are 0.
- */
- public EnumeratedIntegerDistribution(final RandomGenerator rng,
- final int[] singletons, final double[] probabilities)
- throws DimensionMismatchException, NotPositiveException, MathArithmeticException,
- NotFiniteNumberException, NotANumberException {
- super(rng);
- if (singletons.length != probabilities.length) {
- throw new DimensionMismatchException(probabilities.length, singletons.length);
- }
- final List<Pair<Integer, Double>> samples = new ArrayList<Pair<Integer, Double>>(singletons.length);
- for (int i = 0; i < singletons.length; i++) {
- samples.add(new Pair<Integer, Double>(singletons[i], probabilities[i]));
- }
- innerDistribution = new EnumeratedDistribution<Integer>(rng, samples);
- }
- /**
- * {@inheritDoc}
- */
- public double probability(final int x) {
- return innerDistribution.probability(x);
- }
- /**
- * {@inheritDoc}
- */
- public double cumulativeProbability(final int x) {
- double probability = 0;
- for (final Pair<Integer, Double> sample : innerDistribution.getPmf()) {
- if (sample.getKey() <= x) {
- probability += sample.getValue();
- }
- }
- return probability;
- }
- /**
- * {@inheritDoc}
- *
- * @return {@code sum(singletons[i] * probabilities[i])}
- */
- public double getNumericalMean() {
- double mean = 0;
- for (final Pair<Integer, Double> sample : innerDistribution.getPmf()) {
- mean += sample.getValue() * sample.getKey();
- }
- return mean;
- }
- /**
- * {@inheritDoc}
- *
- * @return {@code sum((singletons[i] - mean) ^ 2 * probabilities[i])}
- */
- public double getNumericalVariance() {
- double mean = 0;
- double meanOfSquares = 0;
- for (final Pair<Integer, Double> sample : innerDistribution.getPmf()) {
- mean += sample.getValue() * sample.getKey();
- meanOfSquares += sample.getValue() * sample.getKey() * sample.getKey();
- }
- return meanOfSquares - mean * mean;
- }
- /**
- * {@inheritDoc}
- *
- * Returns the lowest value with non-zero probability.
- *
- * @return the lowest value with non-zero probability.
- */
- public int getSupportLowerBound() {
- int min = Integer.MAX_VALUE;
- for (final Pair<Integer, Double> sample : innerDistribution.getPmf()) {
- if (sample.getKey() < min && sample.getValue() > 0) {
- min = sample.getKey();
- }
- }
- return min;
- }
- /**
- * {@inheritDoc}
- *
- * Returns the highest value with non-zero probability.
- *
- * @return the highest value with non-zero probability.
- */
- public int getSupportUpperBound() {
- int max = Integer.MIN_VALUE;
- for (final Pair<Integer, Double> sample : innerDistribution.getPmf()) {
- if (sample.getKey() > max && sample.getValue() > 0) {
- max = sample.getKey();
- }
- }
- return max;
- }
- /**
- * {@inheritDoc}
- *
- * The support of this distribution is connected.
- *
- * @return {@code true}
- */
- public boolean isSupportConnected() {
- return true;
- }
- /**
- * {@inheritDoc}
- */
- @Override
- public int sample() {
- return innerDistribution.sample();
- }
- }