ChiSquaredDistribution.java
- /*
- * Licensed to the Apache Software Foundation (ASF) under one or more
- * contributor license agreements. See the NOTICE file distributed with
- * this work for additional information regarding copyright ownership.
- * The ASF licenses this file to You under the Apache License, Version 2.0
- * (the "License"); you may not use this file except in compliance with
- * the License. You may obtain a copy of the License at
- *
- * http://www.apache.org/licenses/LICENSE-2.0
- *
- * Unless required by applicable law or agreed to in writing, software
- * distributed under the License is distributed on an "AS IS" BASIS,
- * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- * See the License for the specific language governing permissions and
- * limitations under the License.
- */
- package org.apache.commons.math3.distribution;
- import org.apache.commons.math3.random.RandomGenerator;
- import org.apache.commons.math3.random.Well19937c;
- /**
- * Implementation of the chi-squared distribution.
- *
- * @see <a href="http://en.wikipedia.org/wiki/Chi-squared_distribution">Chi-squared distribution (Wikipedia)</a>
- * @see <a href="http://mathworld.wolfram.com/Chi-SquaredDistribution.html">Chi-squared Distribution (MathWorld)</a>
- */
- public class ChiSquaredDistribution extends AbstractRealDistribution {
- /**
- * Default inverse cumulative probability accuracy
- * @since 2.1
- */
- public static final double DEFAULT_INVERSE_ABSOLUTE_ACCURACY = 1e-9;
- /** Serializable version identifier */
- private static final long serialVersionUID = -8352658048349159782L;
- /** Internal Gamma distribution. */
- private final GammaDistribution gamma;
- /** Inverse cumulative probability accuracy */
- private final double solverAbsoluteAccuracy;
- /**
- * Create a Chi-Squared distribution with the given degrees of freedom.
- *
- * @param degreesOfFreedom Degrees of freedom.
- */
- public ChiSquaredDistribution(double degreesOfFreedom) {
- this(degreesOfFreedom, DEFAULT_INVERSE_ABSOLUTE_ACCURACY);
- }
- /**
- * Create a Chi-Squared distribution with the given degrees of freedom and
- * inverse cumulative probability accuracy.
- * <p>
- * <b>Note:</b> this constructor will implicitly create an instance of
- * {@link Well19937c} as random generator to be used for sampling only (see
- * {@link #sample()} and {@link #sample(int)}). In case no sampling is
- * needed for the created distribution, it is advised to pass {@code null}
- * as random generator via the appropriate constructors to avoid the
- * additional initialisation overhead.
- *
- * @param degreesOfFreedom Degrees of freedom.
- * @param inverseCumAccuracy the maximum absolute error in inverse
- * cumulative probability estimates (defaults to
- * {@link #DEFAULT_INVERSE_ABSOLUTE_ACCURACY}).
- * @since 2.1
- */
- public ChiSquaredDistribution(double degreesOfFreedom,
- double inverseCumAccuracy) {
- this(new Well19937c(), degreesOfFreedom, inverseCumAccuracy);
- }
- /**
- * Create a Chi-Squared distribution with the given degrees of freedom.
- *
- * @param rng Random number generator.
- * @param degreesOfFreedom Degrees of freedom.
- * @since 3.3
- */
- public ChiSquaredDistribution(RandomGenerator rng, double degreesOfFreedom) {
- this(rng, degreesOfFreedom, DEFAULT_INVERSE_ABSOLUTE_ACCURACY);
- }
- /**
- * Create a Chi-Squared distribution with the given degrees of freedom and
- * inverse cumulative probability accuracy.
- *
- * @param rng Random number generator.
- * @param degreesOfFreedom Degrees of freedom.
- * @param inverseCumAccuracy the maximum absolute error in inverse
- * cumulative probability estimates (defaults to
- * {@link #DEFAULT_INVERSE_ABSOLUTE_ACCURACY}).
- * @since 3.1
- */
- public ChiSquaredDistribution(RandomGenerator rng,
- double degreesOfFreedom,
- double inverseCumAccuracy) {
- super(rng);
- gamma = new GammaDistribution(degreesOfFreedom / 2, 2);
- solverAbsoluteAccuracy = inverseCumAccuracy;
- }
- /**
- * Access the number of degrees of freedom.
- *
- * @return the degrees of freedom.
- */
- public double getDegreesOfFreedom() {
- return gamma.getShape() * 2.0;
- }
- /** {@inheritDoc} */
- public double density(double x) {
- return gamma.density(x);
- }
- /** {@inheritDoc} **/
- @Override
- public double logDensity(double x) {
- return gamma.logDensity(x);
- }
- /** {@inheritDoc} */
- public double cumulativeProbability(double x) {
- return gamma.cumulativeProbability(x);
- }
- /** {@inheritDoc} */
- @Override
- protected double getSolverAbsoluteAccuracy() {
- return solverAbsoluteAccuracy;
- }
- /**
- * {@inheritDoc}
- *
- * For {@code k} degrees of freedom, the mean is {@code k}.
- */
- public double getNumericalMean() {
- return getDegreesOfFreedom();
- }
- /**
- * {@inheritDoc}
- *
- * @return {@code 2 * k}, where {@code k} is the number of degrees of freedom.
- */
- public double getNumericalVariance() {
- return 2 * getDegreesOfFreedom();
- }
- /**
- * {@inheritDoc}
- *
- * The lower bound of the support is always 0 no matter the
- * degrees of freedom.
- *
- * @return zero.
- */
- public double getSupportLowerBound() {
- return 0;
- }
- /**
- * {@inheritDoc}
- *
- * The upper bound of the support is always positive infinity no matter the
- * degrees of freedom.
- *
- * @return {@code Double.POSITIVE_INFINITY}.
- */
- public double getSupportUpperBound() {
- return Double.POSITIVE_INFINITY;
- }
- /** {@inheritDoc} */
- public boolean isSupportLowerBoundInclusive() {
- return true;
- }
- /** {@inheritDoc} */
- public boolean isSupportUpperBoundInclusive() {
- return false;
- }
- /**
- * {@inheritDoc}
- *
- * The support of this distribution is connected.
- *
- * @return {@code true}
- */
- public boolean isSupportConnected() {
- return true;
- }
- }