BetaDistribution.java
- /*
- * Licensed to the Apache Software Foundation (ASF) under one or more
- * contributor license agreements. See the NOTICE file distributed with
- * this work for additional information regarding copyright ownership.
- * The ASF licenses this file to You under the Apache License, Version 2.0
- * (the "License"); you may not use this file except in compliance with
- * the License. You may obtain a copy of the License at
- *
- * http://www.apache.org/licenses/LICENSE-2.0
- *
- * Unless required by applicable law or agreed to in writing, software
- * distributed under the License is distributed on an "AS IS" BASIS,
- * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- * See the License for the specific language governing permissions and
- * limitations under the License.
- */
- package org.apache.commons.math3.distribution;
- import org.apache.commons.math3.exception.NumberIsTooSmallException;
- import org.apache.commons.math3.exception.util.LocalizedFormats;
- import org.apache.commons.math3.random.RandomGenerator;
- import org.apache.commons.math3.random.Well19937c;
- import org.apache.commons.math3.special.Beta;
- import org.apache.commons.math3.special.Gamma;
- import org.apache.commons.math3.util.FastMath;
- /**
- * Implements the Beta distribution.
- *
- * @see <a href="http://en.wikipedia.org/wiki/Beta_distribution">Beta distribution</a>
- * @since 2.0 (changed to concrete class in 3.0)
- */
- public class BetaDistribution extends AbstractRealDistribution {
- /**
- * Default inverse cumulative probability accuracy.
- * @since 2.1
- */
- public static final double DEFAULT_INVERSE_ABSOLUTE_ACCURACY = 1e-9;
- /** Serializable version identifier. */
- private static final long serialVersionUID = -1221965979403477668L;
- /** First shape parameter. */
- private final double alpha;
- /** Second shape parameter. */
- private final double beta;
- /** Normalizing factor used in density computations.
- * updated whenever alpha or beta are changed.
- */
- private double z;
- /** Inverse cumulative probability accuracy. */
- private final double solverAbsoluteAccuracy;
- /**
- * Build a new instance.
- * <p>
- * <b>Note:</b> this constructor will implicitly create an instance of
- * {@link Well19937c} as random generator to be used for sampling only (see
- * {@link #sample()} and {@link #sample(int)}). In case no sampling is
- * needed for the created distribution, it is advised to pass {@code null}
- * as random generator via the appropriate constructors to avoid the
- * additional initialisation overhead.
- *
- * @param alpha First shape parameter (must be positive).
- * @param beta Second shape parameter (must be positive).
- */
- public BetaDistribution(double alpha, double beta) {
- this(alpha, beta, DEFAULT_INVERSE_ABSOLUTE_ACCURACY);
- }
- /**
- * Build a new instance.
- * <p>
- * <b>Note:</b> this constructor will implicitly create an instance of
- * {@link Well19937c} as random generator to be used for sampling only (see
- * {@link #sample()} and {@link #sample(int)}). In case no sampling is
- * needed for the created distribution, it is advised to pass {@code null}
- * as random generator via the appropriate constructors to avoid the
- * additional initialisation overhead.
- *
- * @param alpha First shape parameter (must be positive).
- * @param beta Second shape parameter (must be positive).
- * @param inverseCumAccuracy Maximum absolute error in inverse
- * cumulative probability estimates (defaults to
- * {@link #DEFAULT_INVERSE_ABSOLUTE_ACCURACY}).
- * @since 2.1
- */
- public BetaDistribution(double alpha, double beta, double inverseCumAccuracy) {
- this(new Well19937c(), alpha, beta, inverseCumAccuracy);
- }
- /**
- * Creates a β distribution.
- *
- * @param rng Random number generator.
- * @param alpha First shape parameter (must be positive).
- * @param beta Second shape parameter (must be positive).
- * @since 3.3
- */
- public BetaDistribution(RandomGenerator rng, double alpha, double beta) {
- this(rng, alpha, beta, DEFAULT_INVERSE_ABSOLUTE_ACCURACY);
- }
- /**
- * Creates a β distribution.
- *
- * @param rng Random number generator.
- * @param alpha First shape parameter (must be positive).
- * @param beta Second shape parameter (must be positive).
- * @param inverseCumAccuracy Maximum absolute error in inverse
- * cumulative probability estimates (defaults to
- * {@link #DEFAULT_INVERSE_ABSOLUTE_ACCURACY}).
- * @since 3.1
- */
- public BetaDistribution(RandomGenerator rng,
- double alpha,
- double beta,
- double inverseCumAccuracy) {
- super(rng);
- this.alpha = alpha;
- this.beta = beta;
- z = Double.NaN;
- solverAbsoluteAccuracy = inverseCumAccuracy;
- }
- /**
- * Access the first shape parameter, {@code alpha}.
- *
- * @return the first shape parameter.
- */
- public double getAlpha() {
- return alpha;
- }
- /**
- * Access the second shape parameter, {@code beta}.
- *
- * @return the second shape parameter.
- */
- public double getBeta() {
- return beta;
- }
- /** Recompute the normalization factor. */
- private void recomputeZ() {
- if (Double.isNaN(z)) {
- z = Gamma.logGamma(alpha) + Gamma.logGamma(beta) - Gamma.logGamma(alpha + beta);
- }
- }
- /** {@inheritDoc} */
- public double density(double x) {
- final double logDensity = logDensity(x);
- return logDensity == Double.NEGATIVE_INFINITY ? 0 : FastMath.exp(logDensity);
- }
- /** {@inheritDoc} **/
- @Override
- public double logDensity(double x) {
- recomputeZ();
- if (x < 0 || x > 1) {
- return Double.NEGATIVE_INFINITY;
- } else if (x == 0) {
- if (alpha < 1) {
- throw new NumberIsTooSmallException(LocalizedFormats.CANNOT_COMPUTE_BETA_DENSITY_AT_0_FOR_SOME_ALPHA, alpha, 1, false);
- }
- return Double.NEGATIVE_INFINITY;
- } else if (x == 1) {
- if (beta < 1) {
- throw new NumberIsTooSmallException(LocalizedFormats.CANNOT_COMPUTE_BETA_DENSITY_AT_1_FOR_SOME_BETA, beta, 1, false);
- }
- return Double.NEGATIVE_INFINITY;
- } else {
- double logX = FastMath.log(x);
- double log1mX = FastMath.log1p(-x);
- return (alpha - 1) * logX + (beta - 1) * log1mX - z;
- }
- }
- /** {@inheritDoc} */
- public double cumulativeProbability(double x) {
- if (x <= 0) {
- return 0;
- } else if (x >= 1) {
- return 1;
- } else {
- return Beta.regularizedBeta(x, alpha, beta);
- }
- }
- /**
- * Return the absolute accuracy setting of the solver used to estimate
- * inverse cumulative probabilities.
- *
- * @return the solver absolute accuracy.
- * @since 2.1
- */
- @Override
- protected double getSolverAbsoluteAccuracy() {
- return solverAbsoluteAccuracy;
- }
- /**
- * {@inheritDoc}
- *
- * For first shape parameter {@code alpha} and second shape parameter
- * {@code beta}, the mean is {@code alpha / (alpha + beta)}.
- */
- public double getNumericalMean() {
- final double a = getAlpha();
- return a / (a + getBeta());
- }
- /**
- * {@inheritDoc}
- *
- * For first shape parameter {@code alpha} and second shape parameter
- * {@code beta}, the variance is
- * {@code (alpha * beta) / [(alpha + beta)^2 * (alpha + beta + 1)]}.
- */
- public double getNumericalVariance() {
- final double a = getAlpha();
- final double b = getBeta();
- final double alphabetasum = a + b;
- return (a * b) / ((alphabetasum * alphabetasum) * (alphabetasum + 1));
- }
- /**
- * {@inheritDoc}
- *
- * The lower bound of the support is always 0 no matter the parameters.
- *
- * @return lower bound of the support (always 0)
- */
- public double getSupportLowerBound() {
- return 0;
- }
- /**
- * {@inheritDoc}
- *
- * The upper bound of the support is always 1 no matter the parameters.
- *
- * @return upper bound of the support (always 1)
- */
- public double getSupportUpperBound() {
- return 1;
- }
- /** {@inheritDoc} */
- public boolean isSupportLowerBoundInclusive() {
- return false;
- }
- /** {@inheritDoc} */
- public boolean isSupportUpperBoundInclusive() {
- return false;
- }
- /**
- * {@inheritDoc}
- *
- * The support of this distribution is connected.
- *
- * @return {@code true}
- */
- public boolean isSupportConnected() {
- return true;
- }
- }