AbstractIntegerDistribution.java
- /*
- * Licensed to the Apache Software Foundation (ASF) under one or more
- * contributor license agreements. See the NOTICE file distributed with
- * this work for additional information regarding copyright ownership.
- * The ASF licenses this file to You under the Apache License, Version 2.0
- * (the "License"); you may not use this file except in compliance with
- * the License. You may obtain a copy of the License at
- *
- * http://www.apache.org/licenses/LICENSE-2.0
- *
- * Unless required by applicable law or agreed to in writing, software
- * distributed under the License is distributed on an "AS IS" BASIS,
- * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- * See the License for the specific language governing permissions and
- * limitations under the License.
- */
- package org.apache.commons.math3.distribution;
- import java.io.Serializable;
- import org.apache.commons.math3.exception.MathInternalError;
- import org.apache.commons.math3.exception.NotStrictlyPositiveException;
- import org.apache.commons.math3.exception.NumberIsTooLargeException;
- import org.apache.commons.math3.exception.OutOfRangeException;
- import org.apache.commons.math3.exception.util.LocalizedFormats;
- import org.apache.commons.math3.random.RandomGenerator;
- import org.apache.commons.math3.random.RandomDataImpl;
- import org.apache.commons.math3.util.FastMath;
- /**
- * Base class for integer-valued discrete distributions. Default
- * implementations are provided for some of the methods that do not vary
- * from distribution to distribution.
- *
- */
- public abstract class AbstractIntegerDistribution implements IntegerDistribution, Serializable {
- /** Serializable version identifier */
- private static final long serialVersionUID = -1146319659338487221L;
- /**
- * RandomData instance used to generate samples from the distribution.
- * @deprecated As of 3.1, to be removed in 4.0. Please use the
- * {@link #random} instance variable instead.
- */
- @Deprecated
- protected final RandomDataImpl randomData = new RandomDataImpl();
- /**
- * RNG instance used to generate samples from the distribution.
- * @since 3.1
- */
- protected final RandomGenerator random;
- /**
- * @deprecated As of 3.1, to be removed in 4.0. Please use
- * {@link #AbstractIntegerDistribution(RandomGenerator)} instead.
- */
- @Deprecated
- protected AbstractIntegerDistribution() {
- // Legacy users are only allowed to access the deprecated "randomData".
- // New users are forbidden to use this constructor.
- random = null;
- }
- /**
- * @param rng Random number generator.
- * @since 3.1
- */
- protected AbstractIntegerDistribution(RandomGenerator rng) {
- random = rng;
- }
- /**
- * {@inheritDoc}
- *
- * The default implementation uses the identity
- * <p>{@code P(x0 < X <= x1) = P(X <= x1) - P(X <= x0)}</p>
- */
- public double cumulativeProbability(int x0, int x1) throws NumberIsTooLargeException {
- if (x1 < x0) {
- throw new NumberIsTooLargeException(LocalizedFormats.LOWER_ENDPOINT_ABOVE_UPPER_ENDPOINT,
- x0, x1, true);
- }
- return cumulativeProbability(x1) - cumulativeProbability(x0);
- }
- /**
- * {@inheritDoc}
- *
- * The default implementation returns
- * <ul>
- * <li>{@link #getSupportLowerBound()} for {@code p = 0},</li>
- * <li>{@link #getSupportUpperBound()} for {@code p = 1}, and</li>
- * <li>{@link #solveInverseCumulativeProbability(double, int, int)} for
- * {@code 0 < p < 1}.</li>
- * </ul>
- */
- public int inverseCumulativeProbability(final double p) throws OutOfRangeException {
- if (p < 0.0 || p > 1.0) {
- throw new OutOfRangeException(p, 0, 1);
- }
- int lower = getSupportLowerBound();
- if (p == 0.0) {
- return lower;
- }
- if (lower == Integer.MIN_VALUE) {
- if (checkedCumulativeProbability(lower) >= p) {
- return lower;
- }
- } else {
- lower -= 1; // this ensures cumulativeProbability(lower) < p, which
- // is important for the solving step
- }
- int upper = getSupportUpperBound();
- if (p == 1.0) {
- return upper;
- }
- // use the one-sided Chebyshev inequality to narrow the bracket
- // cf. AbstractRealDistribution.inverseCumulativeProbability(double)
- final double mu = getNumericalMean();
- final double sigma = FastMath.sqrt(getNumericalVariance());
- final boolean chebyshevApplies = !(Double.isInfinite(mu) || Double.isNaN(mu) ||
- Double.isInfinite(sigma) || Double.isNaN(sigma) || sigma == 0.0);
- if (chebyshevApplies) {
- double k = FastMath.sqrt((1.0 - p) / p);
- double tmp = mu - k * sigma;
- if (tmp > lower) {
- lower = ((int) FastMath.ceil(tmp)) - 1;
- }
- k = 1.0 / k;
- tmp = mu + k * sigma;
- if (tmp < upper) {
- upper = ((int) FastMath.ceil(tmp)) - 1;
- }
- }
- return solveInverseCumulativeProbability(p, lower, upper);
- }
- /**
- * This is a utility function used by {@link
- * #inverseCumulativeProbability(double)}. It assumes {@code 0 < p < 1} and
- * that the inverse cumulative probability lies in the bracket {@code
- * (lower, upper]}. The implementation does simple bisection to find the
- * smallest {@code p}-quantile <code>inf{x in Z | P(X<=x) >= p}</code>.
- *
- * @param p the cumulative probability
- * @param lower a value satisfying {@code cumulativeProbability(lower) < p}
- * @param upper a value satisfying {@code p <= cumulativeProbability(upper)}
- * @return the smallest {@code p}-quantile of this distribution
- */
- protected int solveInverseCumulativeProbability(final double p, int lower, int upper) {
- while (lower + 1 < upper) {
- int xm = (lower + upper) / 2;
- if (xm < lower || xm > upper) {
- /*
- * Overflow.
- * There will never be an overflow in both calculation methods
- * for xm at the same time
- */
- xm = lower + (upper - lower) / 2;
- }
- double pm = checkedCumulativeProbability(xm);
- if (pm >= p) {
- upper = xm;
- } else {
- lower = xm;
- }
- }
- return upper;
- }
- /** {@inheritDoc} */
- public void reseedRandomGenerator(long seed) {
- random.setSeed(seed);
- randomData.reSeed(seed);
- }
- /**
- * {@inheritDoc}
- *
- * The default implementation uses the
- * <a href="http://en.wikipedia.org/wiki/Inverse_transform_sampling">
- * inversion method</a>.
- */
- public int sample() {
- return inverseCumulativeProbability(random.nextDouble());
- }
- /**
- * {@inheritDoc}
- *
- * The default implementation generates the sample by calling
- * {@link #sample()} in a loop.
- */
- public int[] sample(int sampleSize) {
- if (sampleSize <= 0) {
- throw new NotStrictlyPositiveException(
- LocalizedFormats.NUMBER_OF_SAMPLES, sampleSize);
- }
- int[] out = new int[sampleSize];
- for (int i = 0; i < sampleSize; i++) {
- out[i] = sample();
- }
- return out;
- }
- /**
- * Computes the cumulative probability function and checks for {@code NaN}
- * values returned. Throws {@code MathInternalError} if the value is
- * {@code NaN}. Rethrows any exception encountered evaluating the cumulative
- * probability function. Throws {@code MathInternalError} if the cumulative
- * probability function returns {@code NaN}.
- *
- * @param argument input value
- * @return the cumulative probability
- * @throws MathInternalError if the cumulative probability is {@code NaN}
- */
- private double checkedCumulativeProbability(int argument)
- throws MathInternalError {
- double result = Double.NaN;
- result = cumulativeProbability(argument);
- if (Double.isNaN(result)) {
- throw new MathInternalError(LocalizedFormats
- .DISCRETE_CUMULATIVE_PROBABILITY_RETURNED_NAN, argument);
- }
- return result;
- }
- /**
- * For a random variable {@code X} whose values are distributed according to
- * this distribution, this method returns {@code log(P(X = x))}, where
- * {@code log} is the natural logarithm. In other words, this method
- * represents the logarithm of the probability mass function (PMF) for the
- * distribution. Note that due to the floating point precision and
- * under/overflow issues, this method will for some distributions be more
- * precise and faster than computing the logarithm of
- * {@link #probability(int)}.
- * <p>
- * The default implementation simply computes the logarithm of {@code probability(x)}.</p>
- *
- * @param x the point at which the PMF is evaluated
- * @return the logarithm of the value of the probability mass function at {@code x}
- */
- public double logProbability(int x) {
- return FastMath.log(probability(x));
- }
- }