from __future__ import print_function, division
import collections
from sympy.core.add import Add
from sympy.core.basic import Basic, Atom
from sympy.core.expr import Expr
from sympy.core.function import count_ops
from sympy.core.logic import fuzzy_and
from sympy.core.power import Pow
from sympy.core.symbol import Symbol, Dummy, symbols
from sympy.core.numbers import Integer, ilcm, Float
from sympy.core.singleton import S
from sympy.core.sympify import sympify
from sympy.core.compatibility import is_sequence, default_sort_key, range, NotIterable
from sympy.polys import PurePoly, roots, cancel, gcd
from sympy.simplify import simplify as _simplify, signsimp, nsimplify
from sympy.utilities.iterables import flatten, numbered_symbols
from sympy.functions.elementary.miscellaneous import sqrt, Max, Min
from sympy.functions import exp, factorial
from sympy.printing import sstr
from sympy.core.compatibility import reduce, as_int, string_types
from types import FunctionType
def _iszero(x):
"""Returns True if x is zero."""
return x.is_zero
[docs]class MatrixError(Exception):
pass
[docs]class ShapeError(ValueError, MatrixError):
"""Wrong matrix shape"""
pass
[docs]class NonSquareMatrixError(ShapeError):
pass
class DeferredVector(Symbol, NotIterable):
"""A vector whose components are deferred (e.g. for use with lambdify)
Examples
========
>>> from sympy import DeferredVector, lambdify
>>> X = DeferredVector( 'X' )
>>> X
X
>>> expr = (X[0] + 2, X[2] + 3)
>>> func = lambdify( X, expr)
>>> func( [1, 2, 3] )
(3, 6)
"""
def __getitem__(self, i):
if i == -0:
i = 0
if i < 0:
raise IndexError('DeferredVector index out of range')
component_name = '%s[%d]' % (self.name, i)
return Symbol(component_name)
def __str__(self):
return sstr(self)
def __repr__(self):
return "DeferredVector('%s')" % (self.name)
[docs]class MatrixBase(object):
# Added just for numpy compatibility
__array_priority__ = 11
is_Matrix = True
is_Identity = None
_class_priority = 3
_sympify = staticmethod(sympify)
__hash__ = None # Mutable
@classmethod
def _handle_creation_inputs(cls, *args, **kwargs):
"""Return the number of rows, cols and flat matrix elements.
Examples
========
>>> from sympy import Matrix, I
Matrix can be constructed as follows:
* from a nested list of iterables
>>> Matrix( ((1, 2+I), (3, 4)) )
Matrix([
[1, 2 + I],
[3, 4]])
* from un-nested iterable (interpreted as a column)
>>> Matrix( [1, 2] )
Matrix([
[1],
[2]])
* from un-nested iterable with dimensions
>>> Matrix(1, 2, [1, 2] )
Matrix([[1, 2]])
* from no arguments (a 0 x 0 matrix)
>>> Matrix()
Matrix(0, 0, [])
* from a rule
>>> Matrix(2, 2, lambda i, j: i/(j + 1) )
Matrix([
[0, 0],
[1, 1/2]])
"""
from sympy.matrices.sparse import SparseMatrix
flat_list = None
if len(args) == 1:
# Matrix(SparseMatrix(...))
if isinstance(args[0], SparseMatrix):
return args[0].rows, args[0].cols, flatten(args[0].tolist())
# Matrix(Matrix(...))
elif isinstance(args[0], MatrixBase):
return args[0].rows, args[0].cols, args[0]._mat
# Matrix(MatrixSymbol('X', 2, 2))
elif isinstance(args[0], Basic) and args[0].is_Matrix:
return args[0].rows, args[0].cols, args[0].as_explicit()._mat
# Matrix(numpy.ones((2, 2)))
elif hasattr(args[0], "__array__"):
# NumPy array or matrix or some other object that implements
# __array__. So let's first use this method to get a
# numpy.array() and then make a python list out of it.
arr = args[0].__array__()
if len(arr.shape) == 2:
rows, cols = arr.shape[0], arr.shape[1]
flat_list = [cls._sympify(i) for i in arr.ravel()]
return rows, cols, flat_list
elif len(arr.shape) == 1:
rows, cols = arr.shape[0], 1
flat_list = [S.Zero]*rows
for i in range(len(arr)):
flat_list[i] = cls._sympify(arr[i])
return rows, cols, flat_list
else:
raise NotImplementedError(
"SymPy supports just 1D and 2D matrices")
# Matrix([1, 2, 3]) or Matrix([[1, 2], [3, 4]])
elif is_sequence(args[0])\
and not isinstance(args[0], DeferredVector):
in_mat = []
ncol = set()
for row in args[0]:
if isinstance(row, MatrixBase):
in_mat.extend(row.tolist())
if row.cols or row.rows: # only pay attention if it's not 0x0
ncol.add(row.cols)
else:
in_mat.append(row)
try:
ncol.add(len(row))
except TypeError:
ncol.add(1)
if len(ncol) > 1:
raise ValueError("Got rows of variable lengths: %s" %
sorted(list(ncol)))
cols = ncol.pop() if ncol else 0
rows = len(in_mat) if cols else 0
if rows:
if not is_sequence(in_mat[0]):
cols = 1
flat_list = [cls._sympify(i) for i in in_mat]
return rows, cols, flat_list
flat_list = []
for j in range(rows):
for i in range(cols):
flat_list.append(cls._sympify(in_mat[j][i]))
elif len(args) == 3:
rows = as_int(args[0])
cols = as_int(args[1])
# Matrix(2, 2, lambda i, j: i+j)
if len(args) == 3 and isinstance(args[2], collections.Callable):
op = args[2]
flat_list = []
for i in range(rows):
flat_list.extend(
[cls._sympify(op(cls._sympify(i), cls._sympify(j)))
for j in range(cols)])
# Matrix(2, 2, [1, 2, 3, 4])
elif len(args) == 3 and is_sequence(args[2]):
flat_list = args[2]
if len(flat_list) != rows*cols:
raise ValueError('List length should be equal to rows*columns')
flat_list = [cls._sympify(i) for i in flat_list]
# Matrix()
elif len(args) == 0:
# Empty Matrix
rows = cols = 0
flat_list = []
if flat_list is None:
raise TypeError("Data type not understood")
return rows, cols, flat_list
def _setitem(self, key, value):
"""Helper to set value at location given by key.
Examples
========
>>> from sympy import Matrix, I, zeros, ones
>>> m = Matrix(((1, 2+I), (3, 4)))
>>> m
Matrix([
[1, 2 + I],
[3, 4]])
>>> m[1, 0] = 9
>>> m
Matrix([
[1, 2 + I],
[9, 4]])
>>> m[1, 0] = [[0, 1]]
To replace row r you assign to position r*m where m
is the number of columns:
>>> M = zeros(4)
>>> m = M.cols
>>> M[3*m] = ones(1, m)*2; M
Matrix([
[0, 0, 0, 0],
[0, 0, 0, 0],
[0, 0, 0, 0],
[2, 2, 2, 2]])
And to replace column c you can assign to position c:
>>> M[2] = ones(m, 1)*4; M
Matrix([
[0, 0, 4, 0],
[0, 0, 4, 0],
[0, 0, 4, 0],
[2, 2, 4, 2]])
"""
from .dense import Matrix
is_slice = isinstance(key, slice)
i, j = key = self.key2ij(key)
is_mat = isinstance(value, MatrixBase)
if type(i) is slice or type(j) is slice:
if is_mat:
self.copyin_matrix(key, value)
return
if not isinstance(value, Expr) and is_sequence(value):
self.copyin_list(key, value)
return
raise ValueError('unexpected value: %s' % value)
else:
if (not is_mat and
not isinstance(value, Basic) and is_sequence(value)):
value = Matrix(value)
is_mat = True
if is_mat:
if is_slice:
key = (slice(*divmod(i, self.cols)),
slice(*divmod(j, self.cols)))
else:
key = (slice(i, i + value.rows),
slice(j, j + value.cols))
self.copyin_matrix(key, value)
else:
return i, j, self._sympify(value)
return
def copy(self):
return self._new(self.rows, self.cols, self._mat)
def trace(self):
if not self.is_square:
raise NonSquareMatrixError()
return self._eval_trace()
def inv(self, method=None, **kwargs):
if not self.is_square:
raise NonSquareMatrixError()
if method is not None:
kwargs['method'] = method
return self._eval_inverse(**kwargs)
[docs] def inv_mod(self, m):
r"""
Returns the inverse of the matrix `K` (mod `m`), if it exists.
Method to find the matrix inverse of `K` (mod `m`) implemented in this function:
* Compute `\mathrm{adj}(K) = \mathrm{cof}(K)^t`, the adjoint matrix of `K`.
* Compute `r = 1/\mathrm{det}(K) \pmod m`.
* `K^{-1} = r\cdot \mathrm{adj}(K) \pmod m`.
Examples
========
>>> from sympy import Matrix
>>> A = Matrix(2, 2, [1, 2, 3, 4])
>>> A.inv_mod(5)
Matrix([
[3, 1],
[4, 2]])
>>> A.inv_mod(3)
Matrix([
[1, 1],
[0, 1]])
"""
from sympy.ntheory import totient
if not self.is_square:
raise NonSquareMatrixError()
N = self.cols
phi = totient(m)
det_K = self.det()
if gcd(det_K, m) != 1:
raise ValueError('Matrix is not invertible (mod %d)' % m)
det_inv = pow(int(det_K), int(phi - 1), int(m))
K_adj = self.cofactorMatrix().transpose()
K_inv = self.__class__(N, N, [det_inv*K_adj[i, j] % m for i in range(N) for j in range(N)])
return K_inv
def transpose(self):
return self._eval_transpose()
T = property(transpose, None, None, "Matrix transposition.")
def conjugate(self):
return self._eval_conjugate()
C = property(conjugate, None, None, "By-element conjugation.")
[docs] def adjoint(self):
"""Conjugate transpose or Hermitian conjugation."""
return self.T.C
@property
[docs] def H(self):
"""Return Hermite conjugate.
Examples
========
>>> from sympy import Matrix, I
>>> m = Matrix((0, 1 + I, 2, 3))
>>> m
Matrix([
[ 0],
[1 + I],
[ 2],
[ 3]])
>>> m.H
Matrix([[0, 1 - I, 2, 3]])
See Also
========
conjugate: By-element conjugation
D: Dirac conjugation
"""
return self.T.C
@property
[docs] def D(self):
"""Return Dirac conjugate (if self.rows == 4).
Examples
========
>>> from sympy import Matrix, I, eye
>>> m = Matrix((0, 1 + I, 2, 3))
>>> m.D
Matrix([[0, 1 - I, -2, -3]])
>>> m = (eye(4) + I*eye(4))
>>> m[0, 3] = 2
>>> m.D
Matrix([
[1 - I, 0, 0, 0],
[ 0, 1 - I, 0, 0],
[ 0, 0, -1 + I, 0],
[ 2, 0, 0, -1 + I]])
If the matrix does not have 4 rows an AttributeError will be raised
because this property is only defined for matrices with 4 rows.
>>> Matrix(eye(2)).D
Traceback (most recent call last):
...
AttributeError: Matrix has no attribute D.
See Also
========
conjugate: By-element conjugation
H: Hermite conjugation
"""
from sympy.physics.matrices import mgamma
if self.rows != 4:
# In Python 3.2, properties can only return an AttributeError
# so we can't raise a ShapeError -- see commit which added the
# first line of this inline comment. Also, there is no need
# for a message since MatrixBase will raise the AttributeError
raise AttributeError
return self.H*mgamma(0)
def __array__(self):
from .dense import matrix2numpy
return matrix2numpy(self)
def __len__(self):
"""Return the number of elements of self.
Implemented mainly so bool(Matrix()) == False.
"""
return self.rows*self.cols
@property
[docs] def shape(self):
"""The shape (dimensions) of the matrix as the 2-tuple (rows, cols).
Examples
========
>>> from sympy.matrices import zeros
>>> M = zeros(2, 3)
>>> M.shape
(2, 3)
>>> M.rows
2
>>> M.cols
3
"""
return (self.rows, self.cols)
def __sub__(self, a):
return self + (-a)
def __rsub__(self, a):
return (-self) + a
def __mul__(self, other):
"""Return self*other where other is either a scalar or a matrix
of compatible dimensions.
Examples
========
>>> from sympy.matrices import Matrix
>>> A = Matrix([[1, 2, 3], [4, 5, 6]])
>>> 2*A == A*2 == Matrix([[2, 4, 6], [8, 10, 12]])
True
>>> B = Matrix([[1, 2, 3], [4, 5, 6], [7, 8, 9]])
>>> A*B
Matrix([
[30, 36, 42],
[66, 81, 96]])
>>> B*A
Traceback (most recent call last):
...
ShapeError: Matrices size mismatch.
>>>
See Also
========
matrix_multiply_elementwise
"""
if getattr(other, 'is_Matrix', False):
A = self
B = other
if A.cols != B.rows:
raise ShapeError("Matrices size mismatch.")
if A.cols == 0:
return classof(A, B)._new(A.rows, B.cols, lambda i, j: 0)
blst = B.T.tolist()
alst = A.tolist()
return classof(A, B)._new(A.rows, B.cols, lambda i, j:
reduce(lambda k, l: k + l,
[a_ik * b_kj for a_ik, b_kj in zip(alst[i], blst[j])]))
else:
return self._new(self.rows, self.cols,
[i*other for i in self._mat])
__matmul__ = __mul__
def __rmul__(self, a):
if getattr(a, 'is_Matrix', False):
return self._new(a)*self
return self._new(self.rows, self.cols, [a*i for i in self._mat])
__rmatmul__ = __rmul__
def __pow__(self, num):
from sympy.matrices import eye, diag, MutableMatrix
from sympy import binomial
if not self.is_square:
raise NonSquareMatrixError()
if isinstance(num, int) or isinstance(num, Integer):
n = int(num)
if n < 0:
return self.inv()**-n # A**-2 = (A**-1)**2
a = eye(self.cols)
s = self
while n:
if n % 2:
a *= s
n -= 1
if not n:
break
s *= s
n //= 2
return self._new(a)
elif isinstance(num, (Expr, float)):
def jordan_cell_power(jc, n):
N = jc.shape[0]
l = jc[0, 0]
for i in range(N):
for j in range(N-i):
bn = binomial(n, i)
if isinstance(bn, binomial):
bn = bn._eval_expand_func()
jc[j, i+j] = l**(n-i)*bn
P, jordan_cells = self.jordan_cells()
# Make sure jordan_cells matrices are mutable:
jordan_cells = [MutableMatrix(j) for j in jordan_cells]
for j in jordan_cells:
jordan_cell_power(j, num)
return self._new(P*diag(*jordan_cells)*P.inv())
else:
raise TypeError(
"Only SymPy expressions or int objects are supported as exponent for matrices")
def __add__(self, other):
"""Return self + other, raising ShapeError if shapes don't match."""
if getattr(other, 'is_Matrix', False):
A = self
B = other
if A.shape != B.shape:
raise ShapeError("Matrix size mismatch.")
alst = A.tolist()
blst = B.tolist()
ret = [S.Zero]*A.rows
for i in range(A.shape[0]):
ret[i] = [j + k for j, k in zip(alst[i], blst[i])]
rv = classof(A, B)._new(ret)
if 0 in A.shape:
rv = rv.reshape(*A.shape)
return rv
raise TypeError('cannot add matrix and %s' % type(other))
def __radd__(self, other):
return self + other
def __div__(self, other):
return self*(S.One / other)
def __truediv__(self, other):
return self.__div__(other)
def __neg__(self):
return -1*self
[docs] def multiply(self, b):
"""Returns self*b
See Also
========
dot
cross
multiply_elementwise
"""
return self*b
[docs] def add(self, b):
"""Return self + b """
return self + b
[docs] def table(self, printer, rowstart='[', rowend=']', rowsep='\n',
colsep=', ', align='right'):
r"""
String form of Matrix as a table.
``printer`` is the printer to use for on the elements (generally
something like StrPrinter())
``rowstart`` is the string used to start each row (by default '[').
``rowend`` is the string used to end each row (by default ']').
``rowsep`` is the string used to separate rows (by default a newline).
``colsep`` is the string used to separate columns (by default ', ').
``align`` defines how the elements are aligned. Must be one of 'left',
'right', or 'center'. You can also use '<', '>', and '^' to mean the
same thing, respectively.
This is used by the string printer for Matrix.
Examples
========
>>> from sympy import Matrix
>>> from sympy.printing.str import StrPrinter
>>> M = Matrix([[1, 2], [-33, 4]])
>>> printer = StrPrinter()
>>> M.table(printer)
'[ 1, 2]\n[-33, 4]'
>>> print(M.table(printer))
[ 1, 2]
[-33, 4]
>>> print(M.table(printer, rowsep=',\n'))
[ 1, 2],
[-33, 4]
>>> print('[%s]' % M.table(printer, rowsep=',\n'))
[[ 1, 2],
[-33, 4]]
>>> print(M.table(printer, colsep=' '))
[ 1 2]
[-33 4]
>>> print(M.table(printer, align='center'))
[ 1 , 2]
[-33, 4]
>>> print(M.table(printer, rowstart='{', rowend='}'))
{ 1, 2}
{-33, 4}
"""
# Handle zero dimensions:
if self.rows == 0 or self.cols == 0:
return '[]'
# Build table of string representations of the elements
res = []
# Track per-column max lengths for pretty alignment
maxlen = [0] * self.cols
for i in range(self.rows):
res.append([])
for j in range(self.cols):
s = printer._print(self[i,j])
res[-1].append(s)
maxlen[j] = max(len(s), maxlen[j])
# Patch strings together
align = {
'left': 'ljust',
'right': 'rjust',
'center': 'center',
'<': 'ljust',
'>': 'rjust',
'^': 'center',
}[align]
for i, row in enumerate(res):
for j, elem in enumerate(row):
row[j] = getattr(elem, align)(maxlen[j])
res[i] = rowstart + colsep.join(row) + rowend
return rowsep.join(res)
def _format_str(self, printer=None):
if not printer:
from sympy.printing.str import StrPrinter
printer = StrPrinter()
# Handle zero dimensions:
if self.rows == 0 or self.cols == 0:
return 'Matrix(%s, %s, [])' % (self.rows, self.cols)
if self.rows == 1:
return "Matrix([%s])" % self.table(printer, rowsep=',\n')
return "Matrix([\n%s])" % self.table(printer, rowsep=',\n')
def __str__(self):
if self.rows == 0 or self.cols == 0:
return 'Matrix(%s, %s, [])' % (self.rows, self.cols)
return "Matrix(%s)" % str(self.tolist())
def __repr__(self):
return sstr(self)
[docs] def cholesky(self):
"""Returns the Cholesky decomposition L of a matrix A
such that L * L.T = A
A must be a square, symmetric, positive-definite
and non-singular matrix.
Examples
========
>>> from sympy.matrices import Matrix
>>> A = Matrix(((25, 15, -5), (15, 18, 0), (-5, 0, 11)))
>>> A.cholesky()
Matrix([
[ 5, 0, 0],
[ 3, 3, 0],
[-1, 1, 3]])
>>> A.cholesky() * A.cholesky().T
Matrix([
[25, 15, -5],
[15, 18, 0],
[-5, 0, 11]])
See Also
========
LDLdecomposition
LUdecomposition
QRdecomposition
"""
if not self.is_square:
raise NonSquareMatrixError("Matrix must be square.")
if not self.is_symmetric():
raise ValueError("Matrix must be symmetric.")
return self._cholesky()
[docs] def LDLdecomposition(self):
"""Returns the LDL Decomposition (L, D) of matrix A,
such that L * D * L.T == A
This method eliminates the use of square root.
Further this ensures that all the diagonal entries of L are 1.
A must be a square, symmetric, positive-definite
and non-singular matrix.
Examples
========
>>> from sympy.matrices import Matrix, eye
>>> A = Matrix(((25, 15, -5), (15, 18, 0), (-5, 0, 11)))
>>> L, D = A.LDLdecomposition()
>>> L
Matrix([
[ 1, 0, 0],
[ 3/5, 1, 0],
[-1/5, 1/3, 1]])
>>> D
Matrix([
[25, 0, 0],
[ 0, 9, 0],
[ 0, 0, 9]])
>>> L * D * L.T * A.inv() == eye(A.rows)
True
See Also
========
cholesky
LUdecomposition
QRdecomposition
"""
if not self.is_square:
raise NonSquareMatrixError("Matrix must be square.")
if not self.is_symmetric():
raise ValueError("Matrix must be symmetric.")
return self._LDLdecomposition()
[docs] def lower_triangular_solve(self, rhs):
"""Solves Ax = B, where A is a lower triangular matrix.
See Also
========
upper_triangular_solve
gauss_jordan_solve
cholesky_solve
diagonal_solve
LDLsolve
LUsolve
QRsolve
pinv_solve
"""
if not self.is_square:
raise NonSquareMatrixError("Matrix must be square.")
if rhs.rows != self.rows:
raise ShapeError("Matrices size mismatch.")
if not self.is_lower:
raise ValueError("Matrix must be lower triangular.")
return self._lower_triangular_solve(rhs)
[docs] def upper_triangular_solve(self, rhs):
"""Solves Ax = B, where A is an upper triangular matrix.
See Also
========
lower_triangular_solve
gauss_jordan_solve
cholesky_solve
diagonal_solve
LDLsolve
LUsolve
QRsolve
pinv_solve
"""
if not self.is_square:
raise NonSquareMatrixError("Matrix must be square.")
if rhs.rows != self.rows:
raise TypeError("Matrix size mismatch.")
if not self.is_upper:
raise TypeError("Matrix is not upper triangular.")
return self._upper_triangular_solve(rhs)
[docs] def cholesky_solve(self, rhs):
"""Solves Ax = B using Cholesky decomposition,
for a general square non-singular matrix.
For a non-square matrix with rows > cols,
the least squares solution is returned.
See Also
========
lower_triangular_solve
upper_triangular_solve
gauss_jordan_solve
diagonal_solve
LDLsolve
LUsolve
QRsolve
pinv_solve
"""
if self.is_symmetric():
L = self._cholesky()
elif self.rows >= self.cols:
L = (self.T*self)._cholesky()
rhs = self.T*rhs
else:
raise NotImplementedError('Under-determined System. '
'Try M.gauss_jordan_solve(rhs)')
Y = L._lower_triangular_solve(rhs)
return (L.T)._upper_triangular_solve(Y)
[docs] def diagonal_solve(self, rhs):
"""Solves Ax = B efficiently, where A is a diagonal Matrix,
with non-zero diagonal entries.
Examples
========
>>> from sympy.matrices import Matrix, eye
>>> A = eye(2)*2
>>> B = Matrix([[1, 2], [3, 4]])
>>> A.diagonal_solve(B) == B/2
True
See Also
========
lower_triangular_solve
upper_triangular_solve
gauss_jordan_solve
cholesky_solve
LDLsolve
LUsolve
QRsolve
pinv_solve
"""
if not self.is_diagonal:
raise TypeError("Matrix should be diagonal")
if rhs.rows != self.rows:
raise TypeError("Size mis-match")
return self._diagonal_solve(rhs)
[docs] def LDLsolve(self, rhs):
"""Solves Ax = B using LDL decomposition,
for a general square and non-singular matrix.
For a non-square matrix with rows > cols,
the least squares solution is returned.
Examples
========
>>> from sympy.matrices import Matrix, eye
>>> A = eye(2)*2
>>> B = Matrix([[1, 2], [3, 4]])
>>> A.LDLsolve(B) == B/2
True
See Also
========
LDLdecomposition
lower_triangular_solve
upper_triangular_solve
gauss_jordan_solve
cholesky_solve
diagonal_solve
LUsolve
QRsolve
pinv_solve
"""
if self.is_symmetric():
L, D = self.LDLdecomposition()
elif self.rows >= self.cols:
L, D = (self.T*self).LDLdecomposition()
rhs = self.T*rhs
else:
raise NotImplementedError('Under-determined System. '
'Try M.gauss_jordan_solve(rhs)')
Y = L._lower_triangular_solve(rhs)
Z = D._diagonal_solve(Y)
return (L.T)._upper_triangular_solve(Z)
[docs] def solve_least_squares(self, rhs, method='CH'):
"""Return the least-square fit to the data.
By default the cholesky_solve routine is used (method='CH'); other
methods of matrix inversion can be used. To find out which are
available, see the docstring of the .inv() method.
Examples
========
>>> from sympy.matrices import Matrix, ones
>>> A = Matrix([1, 2, 3])
>>> B = Matrix([2, 3, 4])
>>> S = Matrix(A.row_join(B))
>>> S
Matrix([
[1, 2],
[2, 3],
[3, 4]])
If each line of S represent coefficients of Ax + By
and x and y are [2, 3] then S*xy is:
>>> r = S*Matrix([2, 3]); r
Matrix([
[ 8],
[13],
[18]])
But let's add 1 to the middle value and then solve for the
least-squares value of xy:
>>> xy = S.solve_least_squares(Matrix([8, 14, 18])); xy
Matrix([
[ 5/3],
[10/3]])
The error is given by S*xy - r:
>>> S*xy - r
Matrix([
[1/3],
[1/3],
[1/3]])
>>> _.norm().n(2)
0.58
If a different xy is used, the norm will be higher:
>>> xy += ones(2, 1)/10
>>> (S*xy - r).norm().n(2)
1.5
"""
if method == 'CH':
return self.cholesky_solve(rhs)
t = self.T
return (t*self).inv(method=method)*t*rhs
[docs] def solve(self, rhs, method='GE'):
"""Return solution to self*soln = rhs using given inversion method.
For a list of possible inversion methods, see the .inv() docstring.
"""
if not self.is_square:
if self.rows < self.cols:
raise ValueError('Under-determined system. '
'Try M.gauss_jordan_solve(rhs)')
elif self.rows > self.cols:
raise ValueError('For over-determined system, M, having '
'more rows than columns, try M.solve_least_squares(rhs).')
else:
return self.inv(method=method)*rhs
def __mathml__(self):
mml = ""
for i in range(self.rows):
mml += "<matrixrow>"
for j in range(self.cols):
mml += self[i, j].__mathml__()
mml += "</matrixrow>"
return "<matrix>" + mml + "</matrix>"
[docs] def key2bounds(self, keys):
"""Converts a key with potentially mixed types of keys (integer and slice)
into a tuple of ranges and raises an error if any index is out of self's
range.
See Also
========
key2ij
"""
islice, jslice = [isinstance(k, slice) for k in keys]
if islice:
if not self.rows:
rlo = rhi = 0
else:
rlo, rhi = keys[0].indices(self.rows)[:2]
else:
rlo = a2idx(keys[0], self.rows)
rhi = rlo + 1
if jslice:
if not self.cols:
clo = chi = 0
else:
clo, chi = keys[1].indices(self.cols)[:2]
else:
clo = a2idx(keys[1], self.cols)
chi = clo + 1
return rlo, rhi, clo, chi
[docs] def key2ij(self, key):
"""Converts key into canonical form, converting integers or indexable
items into valid integers for self's range or returning slices
unchanged.
See Also
========
key2bounds
"""
if is_sequence(key):
if not len(key) == 2:
raise TypeError('key must be a sequence of length 2')
return [a2idx(i, n) if not isinstance(i, slice) else i
for i, n in zip(key, self.shape)]
elif isinstance(key, slice):
return key.indices(len(self))[:2]
else:
return divmod(a2idx(key, len(self)), self.cols)
[docs] def evalf(self, prec=None, **options):
"""Apply evalf() to each element of self."""
return self.applyfunc(lambda i: i.evalf(prec, **options))
n = evalf
[docs] def atoms(self, *types):
"""Returns the atoms that form the current object.
Examples
========
>>> from sympy.abc import x, y
>>> from sympy.matrices import Matrix
>>> Matrix([[x]])
Matrix([[x]])
>>> _.atoms()
set([x])
"""
if types:
types = tuple(
[t if isinstance(t, type) else type(t) for t in types])
else:
types = (Atom,)
result = set()
for i in self:
result.update( i.atoms(*types) )
return result
@property
[docs] def free_symbols(self):
"""Returns the free symbols within the matrix.
Examples
========
>>> from sympy.abc import x
>>> from sympy.matrices import Matrix
>>> Matrix([[x], [1]]).free_symbols
set([x])
"""
return set().union(*[i.free_symbols for i in self])
[docs] def subs(self, *args, **kwargs): # should mirror core.basic.subs
"""Return a new matrix with subs applied to each entry.
Examples
========
>>> from sympy.abc import x, y
>>> from sympy.matrices import SparseMatrix, Matrix
>>> SparseMatrix(1, 1, [x])
Matrix([[x]])
>>> _.subs(x, y)
Matrix([[y]])
>>> Matrix(_).subs(y, x)
Matrix([[x]])
"""
return self.applyfunc(lambda x: x.subs(*args, **kwargs))
[docs] def xreplace(self, rule): # should mirror core.basic.xreplace
"""Return a new matrix with xreplace applied to each entry.
Examples
========
>>> from sympy.abc import x, y
>>> from sympy.matrices import SparseMatrix, Matrix
>>> SparseMatrix(1, 1, [x])
Matrix([[x]])
>>> _.xreplace({x: y})
Matrix([[y]])
>>> Matrix(_).xreplace({y: x})
Matrix([[x]])
"""
return self.applyfunc(lambda x: x.xreplace(rule))
[docs] def expand(self, deep=True, modulus=None, power_base=True, power_exp=True,
mul=True, log=True, multinomial=True, basic=True, **hints):
"""Apply core.function.expand to each entry of the matrix.
Examples
========
>>> from sympy.abc import x
>>> from sympy.matrices import Matrix
>>> Matrix(1, 1, [x*(x+1)])
Matrix([[x*(x + 1)]])
>>> _.expand()
Matrix([[x**2 + x]])
"""
return self.applyfunc(lambda x: x.expand(
deep, modulus, power_base, power_exp, mul, log, multinomial, basic,
**hints))
[docs] def simplify(self, ratio=1.7, measure=count_ops):
"""Apply simplify to each element of the matrix.
Examples
========
>>> from sympy.abc import x, y
>>> from sympy import sin, cos
>>> from sympy.matrices import SparseMatrix
>>> SparseMatrix(1, 1, [x*sin(y)**2 + x*cos(y)**2])
Matrix([[x*sin(y)**2 + x*cos(y)**2]])
>>> _.simplify()
Matrix([[x]])
"""
return self.applyfunc(lambda x: x.simplify(ratio, measure))
_eval_simplify = simplify
def doit(self, **kwargs):
return self._new(self.rows, self.cols, [i.doit() for i in self._mat])
[docs] def print_nonzero(self, symb="X"):
"""Shows location of non-zero entries for fast shape lookup.
Examples
========
>>> from sympy.matrices import Matrix, eye
>>> m = Matrix(2, 3, lambda i, j: i*3+j)
>>> m
Matrix([
[0, 1, 2],
[3, 4, 5]])
>>> m.print_nonzero()
[ XX]
[XXX]
>>> m = eye(4)
>>> m.print_nonzero("x")
[x ]
[ x ]
[ x ]
[ x]
"""
s = []
for i in range(self.rows):
line = []
for j in range(self.cols):
if self[i, j] == 0:
line.append(" ")
else:
line.append(str(symb))
s.append("[%s]" % ''.join(line))
print('\n'.join(s))
[docs] def LUsolve(self, rhs, iszerofunc=_iszero):
"""Solve the linear system Ax = rhs for x where A = self.
This is for symbolic matrices, for real or complex ones use
mpmath.lu_solve or mpmath.qr_solve.
See Also
========
lower_triangular_solve
upper_triangular_solve
gauss_jordan_solve
cholesky_solve
diagonal_solve
LDLsolve
QRsolve
pinv_solve
LUdecomposition
"""
if rhs.rows != self.rows:
raise ShapeError("`self` and `rhs` must have the same number of rows.")
A, perm = self.LUdecomposition_Simple(iszerofunc=_iszero)
n = self.rows
b = rhs.permuteFwd(perm).as_mutable()
# forward substitution, all diag entries are scaled to 1
for i in range(n):
for j in range(i):
scale = A[i, j]
b.zip_row_op(i, j, lambda x, y: x - y*scale)
# backward substitution
for i in range(n - 1, -1, -1):
for j in range(i + 1, n):
scale = A[i, j]
b.zip_row_op(i, j, lambda x, y: x - y*scale)
scale = A[i, i]
b.row_op(i, lambda x, _: x/scale)
return rhs.__class__(b)
[docs] def LUdecomposition(self, iszerofunc=_iszero):
"""Returns the decomposition LU and the row swaps p.
Examples
========
>>> from sympy import Matrix
>>> a = Matrix([[4, 3], [6, 3]])
>>> L, U, _ = a.LUdecomposition()
>>> L
Matrix([
[ 1, 0],
[3/2, 1]])
>>> U
Matrix([
[4, 3],
[0, -3/2]])
See Also
========
cholesky
LDLdecomposition
QRdecomposition
LUdecomposition_Simple
LUdecompositionFF
LUsolve
"""
combined, p = self.LUdecomposition_Simple(iszerofunc=_iszero)
L = self.zeros(self.rows)
U = self.zeros(self.rows)
for i in range(self.rows):
for j in range(self.rows):
if i > j:
L[i, j] = combined[i, j]
else:
if i == j:
L[i, i] = 1
U[i, j] = combined[i, j]
return L, U, p
[docs] def LUdecomposition_Simple(self, iszerofunc=_iszero):
"""Returns A comprised of L, U (L's diag entries are 1) and
p which is the list of the row swaps (in order).
See Also
========
LUdecomposition
LUdecompositionFF
LUsolve
"""
if not self.is_square:
raise NonSquareMatrixError("A Matrix must be square to apply LUdecomposition_Simple().")
n = self.rows
A = self.as_mutable()
p = []
# factorization
for j in range(n):
for i in range(j):
for k in range(i):
A[i, j] = A[i, j] - A[i, k]*A[k, j]
pivot = -1
for i in range(j, n):
for k in range(j):
A[i, j] = A[i, j] - A[i, k]*A[k, j]
# find the first non-zero pivot, includes any expression
if pivot == -1 and not iszerofunc(A[i, j]):
pivot = i
if pivot < 0:
# this result is based on iszerofunc's analysis of the possible pivots, so even though
# the element may not be strictly zero, the supplied iszerofunc's evaluation gave True
raise ValueError("No nonzero pivot found; inversion failed.")
if pivot != j: # row must be swapped
A.row_swap(pivot, j)
p.append([pivot, j])
scale = 1 / A[j, j]
for i in range(j + 1, n):
A[i, j] = A[i, j]*scale
return A, p
[docs] def LUdecompositionFF(self):
"""Compute a fraction-free LU decomposition.
Returns 4 matrices P, L, D, U such that PA = L D**-1 U.
If the elements of the matrix belong to some integral domain I, then all
elements of L, D and U are guaranteed to belong to I.
**Reference**
- W. Zhou & D.J. Jeffrey, "Fraction-free matrix factors: new forms
for LU and QR factors". Frontiers in Computer Science in China,
Vol 2, no. 1, pp. 67-80, 2008.
See Also
========
LUdecomposition
LUdecomposition_Simple
LUsolve
"""
from sympy.matrices import SparseMatrix
zeros = SparseMatrix.zeros
eye = SparseMatrix.eye
n, m = self.rows, self.cols
U, L, P = self.as_mutable(), eye(n), eye(n)
DD = zeros(n, n)
oldpivot = 1
for k in range(n - 1):
if U[k, k] == 0:
for kpivot in range(k + 1, n):
if U[kpivot, k]:
break
else:
raise ValueError("Matrix is not full rank")
U[k, k:], U[kpivot, k:] = U[kpivot, k:], U[k, k:]
L[k, :k], L[kpivot, :k] = L[kpivot, :k], L[k, :k]
P[k, :], P[kpivot, :] = P[kpivot, :], P[k, :]
L[k, k] = Ukk = U[k, k]
DD[k, k] = oldpivot*Ukk
for i in range(k + 1, n):
L[i, k] = Uik = U[i, k]
for j in range(k + 1, m):
U[i, j] = (Ukk*U[i, j] - U[k, j]*Uik) / oldpivot
U[i, k] = 0
oldpivot = Ukk
DD[n - 1, n - 1] = oldpivot
return P, L, DD, U
[docs] def cofactorMatrix(self, method="berkowitz"):
"""Return a matrix containing the cofactor of each element.
See Also
========
cofactor
minorEntry
minorMatrix
adjugate
"""
out = self._new(self.rows, self.cols, lambda i, j:
self.cofactor(i, j, method))
return out
[docs] def minorEntry(self, i, j, method="berkowitz"):
"""Calculate the minor of an element.
See Also
========
minorMatrix
cofactor
cofactorMatrix
"""
if not 0 <= i < self.rows or not 0 <= j < self.cols:
raise ValueError("`i` and `j` must satisfy 0 <= i < `self.rows` " +
"(%d)" % self.rows + "and 0 <= j < `self.cols` (%d)." % self.cols)
return self.minorMatrix(i, j).det(method)
[docs] def minorMatrix(self, i, j):
"""Creates the minor matrix of a given element.
See Also
========
minorEntry
cofactor
cofactorMatrix
"""
if not 0 <= i < self.rows or not 0 <= j < self.cols:
raise ValueError("`i` and `j` must satisfy 0 <= i < `self.rows` " +
"(%d)" % self.rows + "and 0 <= j < `self.cols` (%d)." % self.cols)
M = self.as_mutable()
M.row_del(i)
M.col_del(j)
return self._new(M)
[docs] def cofactor(self, i, j, method="berkowitz"):
"""Calculate the cofactor of an element.
See Also
========
cofactorMatrix
minorEntry
minorMatrix
"""
if (i + j) % 2 == 0:
return self.minorEntry(i, j, method)
else:
return -1*self.minorEntry(i, j, method)
[docs] def jacobian(self, X):
"""Calculates the Jacobian matrix (derivative of a vectorial function).
Parameters
==========
self : vector of expressions representing functions f_i(x_1, ..., x_n).
X : set of x_i's in order, it can be a list or a Matrix
Both self and X can be a row or a column matrix in any order
(i.e., jacobian() should always work).
Examples
========
>>> from sympy import sin, cos, Matrix
>>> from sympy.abc import rho, phi
>>> X = Matrix([rho*cos(phi), rho*sin(phi), rho**2])
>>> Y = Matrix([rho, phi])
>>> X.jacobian(Y)
Matrix([
[cos(phi), -rho*sin(phi)],
[sin(phi), rho*cos(phi)],
[ 2*rho, 0]])
>>> X = Matrix([rho*cos(phi), rho*sin(phi)])
>>> X.jacobian(Y)
Matrix([
[cos(phi), -rho*sin(phi)],
[sin(phi), rho*cos(phi)]])
See Also
========
hessian
wronskian
"""
if not isinstance(X, MatrixBase):
X = self._new(X)
# Both X and self can be a row or a column matrix, so we need to make
# sure all valid combinations work, but everything else fails:
if self.shape[0] == 1:
m = self.shape[1]
elif self.shape[1] == 1:
m = self.shape[0]
else:
raise TypeError("self must be a row or a column matrix")
if X.shape[0] == 1:
n = X.shape[1]
elif X.shape[1] == 1:
n = X.shape[0]
else:
raise TypeError("X must be a row or a column matrix")
# m is the number of functions and n is the number of variables
# computing the Jacobian is now easy:
return self._new(m, n, lambda j, i: self[j].diff(X[i]))
[docs] def QRdecomposition(self):
"""Return Q, R where A = Q*R, Q is orthogonal and R is upper triangular.
Examples
========
This is the example from wikipedia:
>>> from sympy import Matrix
>>> A = Matrix([[12, -51, 4], [6, 167, -68], [-4, 24, -41]])
>>> Q, R = A.QRdecomposition()
>>> Q
Matrix([
[ 6/7, -69/175, -58/175],
[ 3/7, 158/175, 6/175],
[-2/7, 6/35, -33/35]])
>>> R
Matrix([
[14, 21, -14],
[ 0, 175, -70],
[ 0, 0, 35]])
>>> A == Q*R
True
QR factorization of an identity matrix:
>>> A = Matrix([[1, 0, 0], [0, 1, 0], [0, 0, 1]])
>>> Q, R = A.QRdecomposition()
>>> Q
Matrix([
[1, 0, 0],
[0, 1, 0],
[0, 0, 1]])
>>> R
Matrix([
[1, 0, 0],
[0, 1, 0],
[0, 0, 1]])
See Also
========
cholesky
LDLdecomposition
LUdecomposition
QRsolve
"""
cls = self.__class__
mat = self.as_mutable()
if not mat.rows >= mat.cols:
raise MatrixError(
"The number of rows must be greater than columns")
n = mat.rows
m = mat.cols
rank = n
row_reduced = mat.rref()[0]
for i in range(row_reduced.rows):
if row_reduced.row(i).norm() == 0:
rank -= 1
if not rank == mat.cols:
raise MatrixError("The rank of the matrix must match the columns")
Q, R = mat.zeros(n, m), mat.zeros(m)
for j in range(m): # for each column vector
tmp = mat[:, j] # take original v
for i in range(j):
# subtract the project of mat on new vector
tmp -= Q[:, i]*mat[:, j].dot(Q[:, i])
tmp.expand()
# normalize it
R[j, j] = tmp.norm()
Q[:, j] = tmp / R[j, j]
if Q[:, j].norm() != 1:
raise NotImplementedError(
"Could not normalize the vector %d." % j)
for i in range(j):
R[i, j] = Q[:, i].dot(mat[:, j])
return cls(Q), cls(R)
[docs] def QRsolve(self, b):
"""Solve the linear system 'Ax = b'.
'self' is the matrix 'A', the method argument is the vector
'b'. The method returns the solution vector 'x'. If 'b' is a
matrix, the system is solved for each column of 'b' and the
return value is a matrix of the same shape as 'b'.
This method is slower (approximately by a factor of 2) but
more stable for floating-point arithmetic than the LUsolve method.
However, LUsolve usually uses an exact arithmetic, so you don't need
to use QRsolve.
This is mainly for educational purposes and symbolic matrices, for real
(or complex) matrices use mpmath.qr_solve.
See Also
========
lower_triangular_solve
upper_triangular_solve
gauss_jordan_solve
cholesky_solve
diagonal_solve
LDLsolve
LUsolve
pinv_solve
QRdecomposition
"""
Q, R = self.as_mutable().QRdecomposition()
y = Q.T*b
# back substitution to solve R*x = y:
# We build up the result "backwards" in the vector 'x' and reverse it
# only in the end.
x = []
n = R.rows
for j in range(n - 1, -1, -1):
tmp = y[j, :]
for k in range(j + 1, n):
tmp -= R[j, k]*x[n - 1 - k]
x.append(tmp / R[j, j])
return self._new([row._mat for row in reversed(x)])
[docs] def cross(self, b):
"""Return the cross product of `self` and `b` relaxing the condition
of compatible dimensions: if each has 3 elements, a matrix of the
same type and shape as `self` will be returned. If `b` has the same
shape as `self` then common identities for the cross product (like
`a x b = - b x a`) will hold.
See Also
========
dot
multiply
multiply_elementwise
"""
if not is_sequence(b):
raise TypeError("`b` must be an ordered iterable or Matrix, not %s." %
type(b))
if not (self.rows * self.cols == b.rows * b.cols == 3):
raise ShapeError("Dimensions incorrect for cross product.")
else:
return self._new(self.rows, self.cols, (
(self[1]*b[2] - self[2]*b[1]),
(self[2]*b[0] - self[0]*b[2]),
(self[0]*b[1] - self[1]*b[0])))
[docs] def dot(self, b):
"""Return the dot product of Matrix self and b relaxing the condition
of compatible dimensions: if either the number of rows or columns are
the same as the length of b then the dot product is returned. If self
is a row or column vector, a scalar is returned. Otherwise, a list
of results is returned (and in that case the number of columns in self
must match the length of b).
Examples
========
>>> from sympy import Matrix
>>> M = Matrix([[1, 2, 3], [4, 5, 6], [7, 8, 9]])
>>> v = [1, 1, 1]
>>> M.row(0).dot(v)
6
>>> M.col(0).dot(v)
12
>>> M.dot(v)
[6, 15, 24]
See Also
========
cross
multiply
multiply_elementwise
"""
from .dense import Matrix
if not isinstance(b, MatrixBase):
if is_sequence(b):
if len(b) != self.cols and len(b) != self.rows:
raise ShapeError("Dimensions incorrect for dot product.")
return self.dot(Matrix(b))
else:
raise TypeError("`b` must be an ordered iterable or Matrix, not %s." %
type(b))
mat = self
if mat.cols == b.rows:
if b.cols != 1:
mat = mat.T
b = b.T
prod = flatten((mat*b).tolist())
if len(prod) == 1:
return prod[0]
return prod
if mat.cols == b.cols:
return mat.dot(b.T)
elif mat.rows == b.rows:
return mat.T.dot(b)
else:
raise ShapeError("Dimensions incorrect for dot product.")
[docs] def multiply_elementwise(self, b):
"""Return the Hadamard product (elementwise product) of A and B
Examples
========
>>> from sympy.matrices import Matrix
>>> A = Matrix([[0, 1, 2], [3, 4, 5]])
>>> B = Matrix([[1, 10, 100], [100, 10, 1]])
>>> A.multiply_elementwise(B)
Matrix([
[ 0, 10, 200],
[300, 40, 5]])
See Also
========
cross
dot
multiply
"""
from sympy.matrices import matrix_multiply_elementwise
return matrix_multiply_elementwise(self, b)
[docs] def values(self):
"""Return non-zero values of self."""
return [i for i in flatten(self.tolist()) if not i.is_zero]
[docs] def norm(self, ord=None):
"""Return the Norm of a Matrix or Vector.
In the simplest case this is the geometric size of the vector
Other norms can be specified by the ord parameter
===== ============================ ==========================
ord norm for matrices norm for vectors
===== ============================ ==========================
None Frobenius norm 2-norm
'fro' Frobenius norm - does not exist
inf -- max(abs(x))
-inf -- min(abs(x))
1 -- as below
-1 -- as below
2 2-norm (largest sing. value) as below
-2 smallest singular value as below
other - does not exist sum(abs(x)**ord)**(1./ord)
===== ============================ ==========================
Examples
========
>>> from sympy import Matrix, Symbol, trigsimp, cos, sin, oo
>>> x = Symbol('x', real=True)
>>> v = Matrix([cos(x), sin(x)])
>>> trigsimp( v.norm() )
1
>>> v.norm(10)
(sin(x)**10 + cos(x)**10)**(1/10)
>>> A = Matrix([[1, 1], [1, 1]])
>>> A.norm(2)# Spectral norm (max of |Ax|/|x| under 2-vector-norm)
2
>>> A.norm(-2) # Inverse spectral norm (smallest singular value)
0
>>> A.norm() # Frobenius Norm
2
>>> Matrix([1, -2]).norm(oo)
2
>>> Matrix([-1, 2]).norm(-oo)
1
See Also
========
normalized
"""
# Row or Column Vector Norms
vals = list(self.values()) or [0]
if self.rows == 1 or self.cols == 1:
if ord == 2 or ord is None: # Common case sqrt(<x, x>)
return sqrt(Add(*(abs(i)**2 for i in vals)))
elif ord == 1: # sum(abs(x))
return Add(*(abs(i) for i in vals))
elif ord == S.Infinity: # max(abs(x))
return Max(*[abs(i) for i in vals])
elif ord == S.NegativeInfinity: # min(abs(x))
return Min(*[abs(i) for i in vals])
# Otherwise generalize the 2-norm, Sum(x_i**ord)**(1/ord)
# Note that while useful this is not mathematically a norm
try:
return Pow(Add(*(abs(i)**ord for i in vals)), S(1) / ord)
except (NotImplementedError, TypeError):
raise ValueError("Expected order to be Number, Symbol, oo")
# Matrix Norms
else:
if ord == 2: # Spectral Norm
# Maximum singular value
return Max(*self.singular_values())
elif ord == -2:
# Minimum singular value
return Min(*self.singular_values())
elif (ord is None or isinstance(ord, string_types) and ord.lower() in
['f', 'fro', 'frobenius', 'vector']):
# Reshape as vector and send back to norm function
return self.vec().norm(ord=2)
else:
raise NotImplementedError("Matrix Norms under development")
[docs] def normalized(self):
"""Return the normalized version of ``self``.
See Also
========
norm
"""
if self.rows != 1 and self.cols != 1:
raise ShapeError("A Matrix must be a vector to normalize.")
norm = self.norm()
out = self.applyfunc(lambda i: i / norm)
return out
[docs] def project(self, v):
"""Return the projection of ``self`` onto the line containing ``v``.
Examples
========
>>> from sympy import Matrix, S, sqrt
>>> V = Matrix([sqrt(3)/2, S.Half])
>>> x = Matrix([[1, 0]])
>>> V.project(x)
Matrix([[sqrt(3)/2, 0]])
>>> V.project(-x)
Matrix([[sqrt(3)/2, 0]])
"""
return v*(self.dot(v) / v.dot(v))
[docs] def permuteBkwd(self, perm):
"""Permute the rows of the matrix with the given permutation in reverse.
Examples
========
>>> from sympy.matrices import eye
>>> M = eye(3)
>>> M.permuteBkwd([[0, 1], [0, 2]])
Matrix([
[0, 1, 0],
[0, 0, 1],
[1, 0, 0]])
See Also
========
permuteFwd
"""
copy = self.copy()
for i in range(len(perm) - 1, -1, -1):
copy.row_swap(perm[i][0], perm[i][1])
return copy
[docs] def permuteFwd(self, perm):
"""Permute the rows of the matrix with the given permutation.
Examples
========
>>> from sympy.matrices import eye
>>> M = eye(3)
>>> M.permuteFwd([[0, 1], [0, 2]])
Matrix([
[0, 0, 1],
[1, 0, 0],
[0, 1, 0]])
See Also
========
permuteBkwd
"""
copy = self.copy()
for i in range(len(perm)):
copy.row_swap(perm[i][0], perm[i][1])
return copy
[docs] def exp(self):
"""Return the exponentiation of a square matrix."""
if not self.is_square:
raise NonSquareMatrixError(
"Exponentiation is valid only for square matrices")
try:
P, cells = self.jordan_cells()
except MatrixError:
raise NotImplementedError("Exponentiation is implemented only for matrices for which the Jordan normal form can be computed")
def _jblock_exponential(b):
# This function computes the matrix exponential for one single Jordan block
nr = b.rows
l = b[0, 0]
if nr == 1:
res = exp(l)
else:
from sympy import eye
# extract the diagonal part
d = b[0, 0]*eye(nr)
#and the nilpotent part
n = b-d
# compute its exponential
nex = eye(nr)
for i in range(1, nr):
nex = nex+n**i/factorial(i)
# combine the two parts
res = exp(b[0, 0])*nex
return(res)
blocks = list(map(_jblock_exponential, cells))
from sympy.matrices import diag
eJ = diag(* blocks)
# n = self.rows
ret = P*eJ*P.inv()
return type(self)(ret)
@property
[docs] def is_square(self):
"""Checks if a matrix is square.
A matrix is square if the number of rows equals the number of columns.
The empty matrix is square by definition, since the number of rows and
the number of columns are both zero.
Examples
========
>>> from sympy import Matrix
>>> a = Matrix([[1, 2, 3], [4, 5, 6]])
>>> b = Matrix([[1, 2, 3], [4, 5, 6], [7, 8, 9]])
>>> c = Matrix([])
>>> a.is_square
False
>>> b.is_square
True
>>> c.is_square
True
"""
return self.rows == self.cols
@property
[docs] def is_zero(self):
"""Checks if a matrix is a zero matrix.
A matrix is zero if every element is zero. A matrix need not be square
to be considered zero. The empty matrix is zero by the principle of
vacuous truth. For a matrix that may or may not be zero (e.g.
contains a symbol), this will be None
Examples
========
>>> from sympy import Matrix, zeros
>>> from sympy.abc import x
>>> a = Matrix([[0, 0], [0, 0]])
>>> b = zeros(3, 4)
>>> c = Matrix([[0, 1], [0, 0]])
>>> d = Matrix([])
>>> e = Matrix([[x, 0], [0, 0]])
>>> a.is_zero
True
>>> b.is_zero
True
>>> c.is_zero
False
>>> d.is_zero
True
>>> e.is_zero
"""
if any(i.is_zero == False for i in self):
return False
if any(i.is_zero == None for i in self):
return None
return True
[docs] def is_nilpotent(self):
"""Checks if a matrix is nilpotent.
A matrix B is nilpotent if for some integer k, B**k is
a zero matrix.
Examples
========
>>> from sympy import Matrix
>>> a = Matrix([[0, 0, 0], [1, 0, 0], [1, 1, 0]])
>>> a.is_nilpotent()
True
>>> a = Matrix([[1, 0, 1], [1, 0, 0], [1, 1, 0]])
>>> a.is_nilpotent()
False
"""
if not self.is_square:
raise NonSquareMatrixError(
"Nilpotency is valid only for square matrices")
x = Dummy('x')
if self.charpoly(x).args[0] == x**self.rows:
return True
return False
@property
[docs] def is_upper(self):
"""Check if matrix is an upper triangular matrix. True can be returned
even if the matrix is not square.
Examples
========
>>> from sympy import Matrix
>>> m = Matrix(2, 2, [1, 0, 0, 1])
>>> m
Matrix([
[1, 0],
[0, 1]])
>>> m.is_upper
True
>>> m = Matrix(4, 3, [5, 1, 9, 0, 4 , 6, 0, 0, 5, 0, 0, 0])
>>> m
Matrix([
[5, 1, 9],
[0, 4, 6],
[0, 0, 5],
[0, 0, 0]])
>>> m.is_upper
True
>>> m = Matrix(2, 3, [4, 2, 5, 6, 1, 1])
>>> m
Matrix([
[4, 2, 5],
[6, 1, 1]])
>>> m.is_upper
False
See Also
========
is_lower
is_diagonal
is_upper_hessenberg
"""
return all(self[i, j].is_zero
for i in range(1, self.rows)
for j in range(i))
@property
[docs] def is_lower(self):
"""Check if matrix is a lower triangular matrix. True can be returned
even if the matrix is not square.
Examples
========
>>> from sympy import Matrix
>>> m = Matrix(2, 2, [1, 0, 0, 1])
>>> m
Matrix([
[1, 0],
[0, 1]])
>>> m.is_lower
True
>>> m = Matrix(4, 3, [0, 0, 0, 2, 0, 0, 1, 4 , 0, 6, 6, 5])
>>> m
Matrix([
[0, 0, 0],
[2, 0, 0],
[1, 4, 0],
[6, 6, 5]])
>>> m.is_lower
True
>>> from sympy.abc import x, y
>>> m = Matrix(2, 2, [x**2 + y, y**2 + x, 0, x + y])
>>> m
Matrix([
[x**2 + y, x + y**2],
[ 0, x + y]])
>>> m.is_lower
False
See Also
========
is_upper
is_diagonal
is_lower_hessenberg
"""
return all(self[i, j].is_zero
for i in range(self.rows)
for j in range(i + 1, self.cols))
@property
[docs] def is_hermitian(self):
"""Checks if the matrix is Hermitian.
In a Hermitian matrix element i,j is the complex conjugate of
element j,i.
Examples
========
>>> from sympy.matrices import Matrix
>>> from sympy import I
>>> from sympy.abc import x
>>> a = Matrix([[1, I], [-I, 1]])
>>> a
Matrix([
[ 1, I],
[-I, 1]])
>>> a.is_hermitian
True
>>> a[0, 0] = 2*I
>>> a.is_hermitian
False
>>> a[0, 0] = x
>>> a.is_hermitian
>>> a[0, 1] = a[1, 0]*I
>>> a.is_hermitian
False
"""
def cond():
yield self.is_square
yield fuzzy_and(
self[i, i].is_real for i in range(self.rows))
yield fuzzy_and(
(self[i, j] - self[j, i].conjugate()).is_zero
for i in range(self.rows)
for j in range(i + 1, self.cols))
return fuzzy_and(i for i in cond())
@property
[docs] def is_upper_hessenberg(self):
"""Checks if the matrix is the upper-Hessenberg form.
The upper hessenberg matrix has zero entries
below the first subdiagonal.
Examples
========
>>> from sympy.matrices import Matrix
>>> a = Matrix([[1, 4, 2, 3], [3, 4, 1, 7], [0, 2, 3, 4], [0, 0, 1, 3]])
>>> a
Matrix([
[1, 4, 2, 3],
[3, 4, 1, 7],
[0, 2, 3, 4],
[0, 0, 1, 3]])
>>> a.is_upper_hessenberg
True
See Also
========
is_lower_hessenberg
is_upper
"""
return all(self[i, j].is_zero
for i in range(2, self.rows)
for j in range(i - 1))
@property
[docs] def is_lower_hessenberg(self):
r"""Checks if the matrix is in the lower-Hessenberg form.
The lower hessenberg matrix has zero entries
above the first superdiagonal.
Examples
========
>>> from sympy.matrices import Matrix
>>> a = Matrix([[1, 2, 0, 0], [5, 2, 3, 0], [3, 4, 3, 7], [5, 6, 1, 1]])
>>> a
Matrix([
[1, 2, 0, 0],
[5, 2, 3, 0],
[3, 4, 3, 7],
[5, 6, 1, 1]])
>>> a.is_lower_hessenberg
True
See Also
========
is_upper_hessenberg
is_lower
"""
return all(self[i, j].is_zero
for i in range(self.rows)
for j in range(i + 2, self.cols))
[docs] def is_symbolic(self):
"""Checks if any elements contain Symbols.
Examples
========
>>> from sympy.matrices import Matrix
>>> from sympy.abc import x, y
>>> M = Matrix([[x, y], [1, 0]])
>>> M.is_symbolic()
True
"""
return any(element.has(Symbol) for element in self.values())
[docs] def is_symmetric(self, simplify=True):
"""Check if matrix is symmetric matrix,
that is square matrix and is equal to its transpose.
By default, simplifications occur before testing symmetry.
They can be skipped using 'simplify=False'; while speeding things a bit,
this may however induce false negatives.
Examples
========
>>> from sympy import Matrix
>>> m = Matrix(2, 2, [0, 1, 1, 2])
>>> m
Matrix([
[0, 1],
[1, 2]])
>>> m.is_symmetric()
True
>>> m = Matrix(2, 2, [0, 1, 2, 0])
>>> m
Matrix([
[0, 1],
[2, 0]])
>>> m.is_symmetric()
False
>>> m = Matrix(2, 3, [0, 0, 0, 0, 0, 0])
>>> m
Matrix([
[0, 0, 0],
[0, 0, 0]])
>>> m.is_symmetric()
False
>>> from sympy.abc import x, y
>>> m = Matrix(3, 3, [1, x**2 + 2*x + 1, y, (x + 1)**2 , 2, 0, y, 0, 3])
>>> m
Matrix([
[ 1, x**2 + 2*x + 1, y],
[(x + 1)**2, 2, 0],
[ y, 0, 3]])
>>> m.is_symmetric()
True
If the matrix is already simplified, you may speed-up is_symmetric()
test by using 'simplify=False'.
>>> m.is_symmetric(simplify=False)
False
>>> m1 = m.expand()
>>> m1.is_symmetric(simplify=False)
True
"""
if not self.is_square:
return False
if simplify:
delta = self - self.transpose()
delta.simplify()
return delta.equals(self.zeros(self.rows, self.cols))
else:
return self == self.transpose()
[docs] def is_anti_symmetric(self, simplify=True):
"""Check if matrix M is an antisymmetric matrix,
that is, M is a square matrix with all M[i, j] == -M[j, i].
When ``simplify=True`` (default), the sum M[i, j] + M[j, i] is
simplified before testing to see if it is zero. By default,
the SymPy simplify function is used. To use a custom function
set simplify to a function that accepts a single argument which
returns a simplified expression. To skip simplification, set
simplify to False but note that although this will be faster,
it may induce false negatives.
Examples
========
>>> from sympy import Matrix, symbols
>>> m = Matrix(2, 2, [0, 1, -1, 0])
>>> m
Matrix([
[ 0, 1],
[-1, 0]])
>>> m.is_anti_symmetric()
True
>>> x, y = symbols('x y')
>>> m = Matrix(2, 3, [0, 0, x, -y, 0, 0])
>>> m
Matrix([
[ 0, 0, x],
[-y, 0, 0]])
>>> m.is_anti_symmetric()
False
>>> from sympy.abc import x, y
>>> m = Matrix(3, 3, [0, x**2 + 2*x + 1, y,
... -(x + 1)**2 , 0, x*y,
... -y, -x*y, 0])
Simplification of matrix elements is done by default so even
though two elements which should be equal and opposite wouldn't
pass an equality test, the matrix is still reported as
anti-symmetric:
>>> m[0, 1] == -m[1, 0]
False
>>> m.is_anti_symmetric()
True
If 'simplify=False' is used for the case when a Matrix is already
simplified, this will speed things up. Here, we see that without
simplification the matrix does not appear anti-symmetric:
>>> m.is_anti_symmetric(simplify=False)
False
But if the matrix were already expanded, then it would appear
anti-symmetric and simplification in the is_anti_symmetric routine
is not needed:
>>> m = m.expand()
>>> m.is_anti_symmetric(simplify=False)
True
"""
# accept custom simplification
simpfunc = simplify if isinstance(simplify, FunctionType) else \
_simplify if simplify else False
if not self.is_square:
return False
n = self.rows
if simplify:
for i in range(n):
# diagonal
if not simpfunc(self[i, i]).is_zero:
return False
# others
for j in range(i + 1, n):
diff = self[i, j] + self[j, i]
if not simpfunc(diff).is_zero:
return False
return True
else:
for i in range(n):
for j in range(i, n):
if self[i, j] != -self[j, i]:
return False
return True
[docs] def is_diagonal(self):
"""Check if matrix is diagonal,
that is matrix in which the entries outside the main diagonal are all zero.
Examples
========
>>> from sympy import Matrix, diag
>>> m = Matrix(2, 2, [1, 0, 0, 2])
>>> m
Matrix([
[1, 0],
[0, 2]])
>>> m.is_diagonal()
True
>>> m = Matrix(2, 2, [1, 1, 0, 2])
>>> m
Matrix([
[1, 1],
[0, 2]])
>>> m.is_diagonal()
False
>>> m = diag(1, 2, 3)
>>> m
Matrix([
[1, 0, 0],
[0, 2, 0],
[0, 0, 3]])
>>> m.is_diagonal()
True
See Also
========
is_lower
is_upper
is_diagonalizable
diagonalize
"""
for i in range(self.rows):
for j in range(self.cols):
if i != j and self[i, j]:
return False
return True
[docs] def det(self, method="bareis"):
"""Computes the matrix determinant using the method "method".
Possible values for "method":
bareis ... det_bareis
berkowitz ... berkowitz_det
det_LU ... det_LU_decomposition
See Also
========
det_bareis
berkowitz_det
det_LU
"""
# if methods were made internal and all determinant calculations
# passed through here, then these lines could be factored out of
# the method routines
if not self.is_square:
raise NonSquareMatrixError()
if not self:
return S.One
if method == "bareis":
return self.det_bareis()
elif method == "berkowitz":
return self.berkowitz_det()
elif method == "det_LU":
return self.det_LU_decomposition()
else:
raise ValueError("Determinant method '%s' unrecognized" % method)
[docs] def det_bareis(self):
"""Compute matrix determinant using Bareis' fraction-free
algorithm which is an extension of the well known Gaussian
elimination method. This approach is best suited for dense
symbolic matrices and will result in a determinant with
minimal number of fractions. It means that less term
rewriting is needed on resulting formulae.
TODO: Implement algorithm for sparse matrices (SFF),
http://www.eecis.udel.edu/~saunders/papers/sffge/it5.ps.
See Also
========
det
berkowitz_det
"""
if not self.is_square:
raise NonSquareMatrixError()
if not self:
return S.One
M, n = self.copy().as_mutable(), self.rows
if n == 1:
det = M[0, 0]
elif n == 2:
det = M[0, 0]*M[1, 1] - M[0, 1]*M[1, 0]
elif n == 3:
det = (M[0, 0]*M[1, 1]*M[2, 2] + M[0, 1]*M[1, 2]*M[2, 0] + M[0, 2]*M[1, 0]*M[2, 1]) - \
(M[0, 2]*M[1, 1]*M[2, 0] + M[0, 0]*M[1, 2]*M[2, 1] + M[0, 1]*M[1, 0]*M[2, 2])
else:
sign = 1 # track current sign in case of column swap
for k in range(n - 1):
# look for a pivot in the current column
# and assume det == 0 if none is found
if M[k, k] == 0:
for i in range(k + 1, n):
if M[i, k]:
M.row_swap(i, k)
sign *= -1
break
else:
return S.Zero
# proceed with Bareis' fraction-free (FF)
# form of Gaussian elimination algorithm
for i in range(k + 1, n):
for j in range(k + 1, n):
D = M[k, k]*M[i, j] - M[i, k]*M[k, j]
if k > 0:
D /= M[k - 1, k - 1]
if D.is_Atom:
M[i, j] = D
else:
M[i, j] = cancel(D)
det = sign*M[n - 1, n - 1]
return det.expand()
[docs] def det_LU_decomposition(self):
"""Compute matrix determinant using LU decomposition
Note that this method fails if the LU decomposition itself
fails. In particular, if the matrix has no inverse this method
will fail.
TODO: Implement algorithm for sparse matrices (SFF),
http://www.eecis.udel.edu/~saunders/papers/sffge/it5.ps.
See Also
========
det
det_bareis
berkowitz_det
"""
if not self.is_square:
raise NonSquareMatrixError()
if not self:
return S.One
M, n = self.copy(), self.rows
p, prod = [], 1
l, u, p = M.LUdecomposition()
if len(p) % 2:
prod = -1
for k in range(n):
prod = prod*u[k, k]*l[k, k]
return prod.expand()
[docs] def adjugate(self, method="berkowitz"):
"""Returns the adjugate matrix.
Adjugate matrix is the transpose of the cofactor matrix.
http://en.wikipedia.org/wiki/Adjugate
See Also
========
cofactorMatrix
transpose
berkowitz
"""
return self.cofactorMatrix(method).T
[docs] def inverse_LU(self, iszerofunc=_iszero):
"""Calculates the inverse using LU decomposition.
See Also
========
inv
inverse_GE
inverse_ADJ
"""
if not self.is_square:
raise NonSquareMatrixError()
ok = self.rref(simplify=True)[0]
if any(iszerofunc(ok[j, j]) for j in range(ok.rows)):
raise ValueError("Matrix det == 0; not invertible.")
return self.LUsolve(self.eye(self.rows), iszerofunc=_iszero)
[docs] def inverse_GE(self, iszerofunc=_iszero):
"""Calculates the inverse using Gaussian elimination.
See Also
========
inv
inverse_LU
inverse_ADJ
"""
from .dense import Matrix
if not self.is_square:
raise NonSquareMatrixError("A Matrix must be square to invert.")
big = Matrix.hstack(self.as_mutable(), Matrix.eye(self.rows))
red = big.rref(iszerofunc=iszerofunc, simplify=True)[0]
if any(iszerofunc(red[j, j]) for j in range(red.rows)):
raise ValueError("Matrix det == 0; not invertible.")
return self._new(red[:, big.rows:])
[docs] def inverse_ADJ(self, iszerofunc=_iszero):
"""Calculates the inverse using the adjugate matrix and a determinant.
See Also
========
inv
inverse_LU
inverse_GE
"""
if not self.is_square:
raise NonSquareMatrixError("A Matrix must be square to invert.")
d = self.berkowitz_det()
zero = d.equals(0)
if zero is None:
# if equals() can't decide, will rref be able to?
ok = self.rref(simplify=True)[0]
zero = any(iszerofunc(ok[j, j]) for j in range(ok.rows))
if zero:
raise ValueError("Matrix det == 0; not invertible.")
return self.adjugate() / d
[docs] def rref(self, iszerofunc=_iszero, simplify=False):
"""Return reduced row-echelon form of matrix and indices of pivot vars.
To simplify elements before finding nonzero pivots set simplify=True
(to use the default SymPy simplify function) or pass a custom
simplify function.
Examples
========
>>> from sympy import Matrix
>>> from sympy.abc import x
>>> m = Matrix([[1, 2], [x, 1 - 1/x]])
>>> m.rref()
(Matrix([
[1, 0],
[0, 1]]), [0, 1])
"""
simpfunc = simplify if isinstance(
simplify, FunctionType) else _simplify
# pivot: index of next row to contain a pivot
pivot, r = 0, self.as_mutable()
# pivotlist: indices of pivot variables (non-free)
pivotlist = []
for i in range(r.cols):
if pivot == r.rows:
break
if simplify:
r[pivot, i] = simpfunc(r[pivot, i])
if iszerofunc(r[pivot, i]):
for k in range(pivot, r.rows):
if simplify and k > pivot:
r[k, i] = simpfunc(r[k, i])
if not iszerofunc(r[k, i]):
r.row_swap(pivot, k)
break
else:
continue
scale = r[pivot, i]
r.row_op(pivot, lambda x, _: x / scale)
for j in range(r.rows):
if j == pivot:
continue
scale = r[j, i]
r.zip_row_op(j, pivot, lambda x, y: x - scale*y)
pivotlist.append(i)
pivot += 1
return self._new(r), pivotlist
[docs] def rank(self, iszerofunc=_iszero, simplify=False):
"""
Returns the rank of a matrix
>>> from sympy import Matrix
>>> from sympy.abc import x
>>> m = Matrix([[1, 2], [x, 1 - 1/x]])
>>> m.rank()
2
>>> n = Matrix(3, 3, range(1, 10))
>>> n.rank()
2
"""
row_reduced = self.rref(iszerofunc=iszerofunc, simplify=simplify)
rank = len(row_reduced[-1])
return rank
[docs] def nullspace(self, simplify=False):
"""Returns list of vectors (Matrix objects) that span nullspace of self
Examples
========
>>> from sympy.matrices import Matrix
>>> m = Matrix(3, 3, [1, 3, 0, -2, -6, 0, 3, 9, 6])
>>> m
Matrix([
[ 1, 3, 0],
[-2, -6, 0],
[ 3, 9, 6]])
>>> m.nullspace()
[Matrix([
[-3],
[ 1],
[ 0]])]
See Also
========
columnspace
"""
from sympy.matrices import zeros
simpfunc = simplify if isinstance(
simplify, FunctionType) else _simplify
reduced, pivots = self.rref(simplify=simpfunc)
basis = []
# create a set of vectors for the basis
for i in range(self.cols - len(pivots)):
basis.append(zeros(self.cols, 1))
# contains the variable index to which the vector corresponds
basiskey, cur = [-1]*len(basis), 0
for i in range(self.cols):
if i not in pivots:
basiskey[cur] = i
cur += 1
for i in range(self.cols):
if i not in pivots: # free var, just set vector's ith place to 1
basis[basiskey.index(i)][i, 0] = 1
else: # add negative of nonpivot entry to corr vector
for j in range(i + 1, self.cols):
line = pivots.index(i)
v = reduced[line, j]
if simplify:
v = simpfunc(v)
if v:
if j in pivots:
# XXX: Is this the correct error?
raise NotImplementedError(
"Could not compute the nullspace of `self`.")
basis[basiskey.index(j)][i, 0] = -v
return [self._new(b) for b in basis]
[docs] def columnspace(self, simplify=False):
"""Returns list of vectors (Matrix objects) that span columnspace of self
Examples
========
>>> from sympy.matrices import Matrix
>>> m = Matrix(3, 3, [1, 3, 0, -2, -6, 0, 3, 9, 6])
>>> m
Matrix([
[ 1, 3, 0],
[-2, -6, 0],
[ 3, 9, 6]])
>>> m.columnspace()
[Matrix([
[ 1],
[-2],
[ 3]]), Matrix([
[0],
[0],
[6]])]
See Also
========
nullspace
"""
simpfunc = simplify if isinstance(
simplify, FunctionType) else _simplify
reduced, pivots = self.rref(simplify=simpfunc)
basis = []
# create a set of vectors for the basis
for i in range(self.cols):
if i in pivots:
basis.append(self.col(i))
return [self._new(b) for b in basis]
[docs] def berkowitz(self):
"""The Berkowitz algorithm.
Given N x N matrix with symbolic content, compute efficiently
coefficients of characteristic polynomials of 'self' and all
its square sub-matrices composed by removing both i-th row
and column, without division in the ground domain.
This method is particularly useful for computing determinant,
principal minors and characteristic polynomial, when 'self'
has complicated coefficients e.g. polynomials. Semi-direct
usage of this algorithm is also important in computing
efficiently sub-resultant PRS.
Assuming that M is a square matrix of dimension N x N and
I is N x N identity matrix, then the following following
definition of characteristic polynomial is begin used:
charpoly(M) = det(t*I - M)
As a consequence, all polynomials generated by Berkowitz
algorithm are monic.
>>> from sympy import Matrix
>>> from sympy.abc import x, y, z
>>> M = Matrix([[x, y, z], [1, 0, 0], [y, z, x]])
>>> p, q, r = M.berkowitz()
>>> p # 1 x 1 M's sub-matrix
(1, -x)
>>> q # 2 x 2 M's sub-matrix
(1, -x, -y)
>>> r # 3 x 3 M's sub-matrix
(1, -2*x, x**2 - y*z - y, x*y - z**2)
For more information on the implemented algorithm refer to:
[1] S.J. Berkowitz, On computing the determinant in small
parallel time using a small number of processors, ACM,
Information Processing Letters 18, 1984, pp. 147-150
[2] M. Keber, Division-Free computation of sub-resultants
using Bezout matrices, Tech. Report MPI-I-2006-1-006,
Saarbrucken, 2006
See Also
========
berkowitz_det
berkowitz_minors
berkowitz_charpoly
berkowitz_eigenvals
"""
from sympy.matrices import zeros
if not self.is_square:
raise NonSquareMatrixError()
A, N = self, self.rows
transforms = [0]*(N - 1)
for n in range(N, 1, -1):
T, k = zeros(n + 1, n), n - 1
R, C = -A[k, :k], A[:k, k]
A, a = A[:k, :k], -A[k, k]
items = [C]
for i in range(0, n - 2):
items.append(A*items[i])
for i, B in enumerate(items):
items[i] = (R*B)[0, 0]
items = [S.One, a] + items
for i in range(n):
T[i:, i] = items[:n - i + 1]
transforms[k - 1] = T
polys = [self._new([S.One, -A[0, 0]])]
for i, T in enumerate(transforms):
polys.append(T*polys[i])
return tuple(map(tuple, polys))
[docs] def berkowitz_det(self):
"""Computes determinant using Berkowitz method.
See Also
========
det
berkowitz
"""
if not self.is_square:
raise NonSquareMatrixError()
if not self:
return S.One
poly = self.berkowitz()[-1]
sign = (-1)**(len(poly) - 1)
return sign*poly[-1]
[docs] def berkowitz_minors(self):
"""Computes principal minors using Berkowitz method.
See Also
========
berkowitz
"""
sign, minors = S.NegativeOne, []
for poly in self.berkowitz():
minors.append(sign*poly[-1])
sign = -sign
return tuple(minors)
[docs] def berkowitz_charpoly(self, x=Dummy('lambda'), simplify=_simplify):
"""Computes characteristic polynomial minors using Berkowitz method.
A PurePoly is returned so using different variables for ``x`` does
not affect the comparison or the polynomials:
Examples
========
>>> from sympy import Matrix
>>> from sympy.abc import x, y
>>> A = Matrix([[1, 3], [2, 0]])
>>> A.berkowitz_charpoly(x) == A.berkowitz_charpoly(y)
True
Specifying ``x`` is optional; a Dummy with name ``lambda`` is used by
default (which looks good when pretty-printed in unicode):
>>> A.berkowitz_charpoly().as_expr()
_lambda**2 - _lambda - 6
No test is done to see that ``x`` doesn't clash with an existing
symbol, so using the default (``lambda``) or your own Dummy symbol is
the safest option:
>>> A = Matrix([[1, 2], [x, 0]])
>>> A.charpoly().as_expr()
_lambda**2 - _lambda - 2*x
>>> A.charpoly(x).as_expr()
x**2 - 3*x
See Also
========
berkowitz
"""
return PurePoly(list(map(simplify, self.berkowitz()[-1])), x)
charpoly = berkowitz_charpoly
[docs] def berkowitz_eigenvals(self, **flags):
"""Computes eigenvalues of a Matrix using Berkowitz method.
See Also
========
berkowitz
"""
return roots(self.berkowitz_charpoly(Dummy('x')), **flags)
[docs] def eigenvals(self, **flags):
"""Return eigen values using the berkowitz_eigenvals routine.
Since the roots routine doesn't always work well with Floats,
they will be replaced with Rationals before calling that
routine. If this is not desired, set flag ``rational`` to False.
"""
# roots doesn't like Floats, so replace them with Rationals
# unless the nsimplify flag indicates that this has already
# been done, e.g. in eigenvects
mat = self
if flags.pop('rational', True):
if any(v.has(Float) for v in mat):
mat = mat._new(mat.rows, mat.cols,
[nsimplify(v, rational=True) for v in mat])
flags.pop('simplify', None) # pop unsupported flag
return mat.berkowitz_eigenvals(**flags)
[docs] def eigenvects(self, **flags):
"""Return list of triples (eigenval, multiplicity, basis).
The flag ``simplify`` has two effects:
1) if bool(simplify) is True, as_content_primitive()
will be used to tidy up normalization artifacts;
2) if nullspace needs simplification to compute the
basis, the simplify flag will be passed on to the
nullspace routine which will interpret it there.
If the matrix contains any Floats, they will be changed to Rationals
for computation purposes, but the answers will be returned after being
evaluated with evalf. If it is desired to removed small imaginary
portions during the evalf step, pass a value for the ``chop`` flag.
"""
from sympy.matrices import eye
simplify = flags.get('simplify', True)
primitive = bool(flags.get('simplify', False))
chop = flags.pop('chop', False)
flags.pop('multiple', None) # remove this if it's there
# roots doesn't like Floats, so replace them with Rationals
float = False
mat = self
if any(v.has(Float) for v in self):
float = True
mat = mat._new(mat.rows, mat.cols, [nsimplify(
v, rational=True) for v in mat])
flags['rational'] = False # to tell eigenvals not to do this
out, vlist = [], mat.eigenvals(**flags)
vlist = list(vlist.items())
vlist.sort(key=default_sort_key)
flags.pop('rational', None)
for r, k in vlist:
tmp = mat.as_mutable() - eye(mat.rows)*r
basis = tmp.nullspace()
# whether tmp.is_symbolic() is True or False, it is possible that
# the basis will come back as [] in which case simplification is
# necessary.
if not basis:
# The nullspace routine failed, try it again with simplification
basis = tmp.nullspace(simplify=simplify)
if not basis:
raise NotImplementedError(
"Can't evaluate eigenvector for eigenvalue %s" % r)
if primitive:
# the relationship A*e = lambda*e will still hold if we change the
# eigenvector; so if simplify is True we tidy up any normalization
# artifacts with as_content_primtive (default) and remove any pure Integer
# denominators.
l = 1
for i, b in enumerate(basis[0]):
c, p = signsimp(b).as_content_primitive()
if c is not S.One:
b = c*p
l = ilcm(l, c.q)
basis[0][i] = b
if l != 1:
basis[0] *= l
if float:
out.append((r.evalf(chop=chop), k, [
mat._new(b).evalf(chop=chop) for b in basis]))
else:
out.append((r, k, [mat._new(b) for b in basis]))
return out
[docs] def left_eigenvects(self, **flags):
"""Returns left eigenvectors and eigenvalues.
This function returns the list of triples (eigenval, multiplicity,
basis) for the left eigenvectors. Options are the same as for
eigenvects(), i.e. the ``**flags`` arguments gets passed directly to
eigenvects().
Examples
========
>>> from sympy import Matrix
>>> M = Matrix([[0, 1, 1], [1, 0, 0], [1, 1, 1]])
>>> M.eigenvects()
[(-1, 1, [Matrix([
[-1],
[ 1],
[ 0]])]), (0, 1, [Matrix([
[ 0],
[-1],
[ 1]])]), (2, 1, [Matrix([
[2/3],
[1/3],
[ 1]])])]
>>> M.left_eigenvects()
[(-1, 1, [Matrix([[-2, 1, 1]])]), (0, 1, [Matrix([[-1, -1, 1]])]), (2,
1, [Matrix([[1, 1, 1]])])]
"""
mat = self
left_transpose = mat.transpose().eigenvects(**flags)
left = []
for (ev, mult, ltmp) in left_transpose:
left.append( (ev, mult, [l.transpose() for l in ltmp]) )
return left
[docs] def singular_values(self):
"""Compute the singular values of a Matrix
Examples
========
>>> from sympy import Matrix, Symbol
>>> x = Symbol('x', real=True)
>>> A = Matrix([[0, 1, 0], [0, x, 0], [-1, 0, 0]])
>>> A.singular_values()
[sqrt(x**2 + 1), 1, 0]
See Also
========
condition_number
"""
mat = self.as_mutable()
# Compute eigenvalues of A.H A
valmultpairs = (mat.H*mat).eigenvals()
# Expands result from eigenvals into a simple list
vals = []
for k, v in valmultpairs.items():
vals += [sqrt(k)]*v # dangerous! same k in several spots!
# sort them in descending order
vals.sort(reverse=True, key=default_sort_key)
return vals
[docs] def condition_number(self):
"""Returns the condition number of a matrix.
This is the maximum singular value divided by the minimum singular value
Examples
========
>>> from sympy import Matrix, S
>>> A = Matrix([[1, 0, 0], [0, 10, 0], [0, 0, S.One/10]])
>>> A.condition_number()
100
See Also
========
singular_values
"""
singularvalues = self.singular_values()
return Max(*singularvalues) / Min(*singularvalues)
def __getattr__(self, attr):
if attr in ('diff', 'integrate', 'limit'):
def doit(*args):
item_doit = lambda item: getattr(item, attr)(*args)
return self.applyfunc(item_doit)
return doit
else:
raise AttributeError(
"%s has no attribute %s." % (self.__class__.__name__, attr))
[docs] def integrate(self, *args):
"""Integrate each element of the matrix.
Examples
========
>>> from sympy.matrices import Matrix
>>> from sympy.abc import x, y
>>> M = Matrix([[x, y], [1, 0]])
>>> M.integrate((x, ))
Matrix([
[x**2/2, x*y],
[ x, 0]])
>>> M.integrate((x, 0, 2))
Matrix([
[2, 2*y],
[2, 0]])
See Also
========
limit
diff
"""
return self._new(self.rows, self.cols,
lambda i, j: self[i, j].integrate(*args))
[docs] def limit(self, *args):
"""Calculate the limit of each element in the matrix.
Examples
========
>>> from sympy.matrices import Matrix
>>> from sympy.abc import x, y
>>> M = Matrix([[x, y], [1, 0]])
>>> M.limit(x, 2)
Matrix([
[2, y],
[1, 0]])
See Also
========
integrate
diff
"""
return self._new(self.rows, self.cols,
lambda i, j: self[i, j].limit(*args))
[docs] def diff(self, *args):
"""Calculate the derivative of each element in the matrix.
Examples
========
>>> from sympy.matrices import Matrix
>>> from sympy.abc import x, y
>>> M = Matrix([[x, y], [1, 0]])
>>> M.diff(x)
Matrix([
[1, 0],
[0, 0]])
See Also
========
integrate
limit
"""
return self._new(self.rows, self.cols,
lambda i, j: self[i, j].diff(*args))
[docs] def vec(self):
"""Return the Matrix converted into a one column matrix by stacking columns
Examples
========
>>> from sympy import Matrix
>>> m=Matrix([[1, 3], [2, 4]])
>>> m
Matrix([
[1, 3],
[2, 4]])
>>> m.vec()
Matrix([
[1],
[2],
[3],
[4]])
See Also
========
vech
"""
return self.T.reshape(len(self), 1)
[docs] def vech(self, diagonal=True, check_symmetry=True):
"""Return the unique elements of a symmetric Matrix as a one column matrix
by stacking the elements in the lower triangle.
Arguments:
diagonal -- include the diagonal cells of self or not
check_symmetry -- checks symmetry of self but not completely reliably
Examples
========
>>> from sympy import Matrix
>>> m=Matrix([[1, 2], [2, 3]])
>>> m
Matrix([
[1, 2],
[2, 3]])
>>> m.vech()
Matrix([
[1],
[2],
[3]])
>>> m.vech(diagonal=False)
Matrix([[2]])
See Also
========
vec
"""
from sympy.matrices import zeros
c = self.cols
if c != self.rows:
raise ShapeError("Matrix must be square")
if check_symmetry:
self.simplify()
if self != self.transpose():
raise ValueError("Matrix appears to be asymmetric; consider check_symmetry=False")
count = 0
if diagonal:
v = zeros(c*(c + 1) // 2, 1)
for j in range(c):
for i in range(j, c):
v[count] = self[i, j]
count += 1
else:
v = zeros(c*(c - 1) // 2, 1)
for j in range(c):
for i in range(j + 1, c):
v[count] = self[i, j]
count += 1
return v
[docs] def get_diag_blocks(self):
"""Obtains the square sub-matrices on the main diagonal of a square matrix.
Useful for inverting symbolic matrices or solving systems of
linear equations which may be decoupled by having a block diagonal
structure.
Examples
========
>>> from sympy import Matrix
>>> from sympy.abc import x, y, z
>>> A = Matrix([[1, 3, 0, 0], [y, z*z, 0, 0], [0, 0, x, 0], [0, 0, 0, 0]])
>>> a1, a2, a3 = A.get_diag_blocks()
>>> a1
Matrix([
[1, 3],
[y, z**2]])
>>> a2
Matrix([[x]])
>>> a3
Matrix([[0]])
"""
sub_blocks = []
def recurse_sub_blocks(M):
i = 1
while i <= M.shape[0]:
if i == 1:
to_the_right = M[0, i:]
to_the_bottom = M[i:, 0]
else:
to_the_right = M[:i, i:]
to_the_bottom = M[i:, :i]
if any(to_the_right) or any(to_the_bottom):
i += 1
continue
else:
sub_blocks.append(M[:i, :i])
if M.shape == M[:i, :i].shape:
return
else:
recurse_sub_blocks(M[i:, i:])
return
recurse_sub_blocks(self)
return sub_blocks
[docs] def diagonalize(self, reals_only=False, sort=False, normalize=False):
"""
Return (P, D), where D is diagonal and
D = P^-1 * M * P
where M is current matrix.
Examples
========
>>> from sympy import Matrix
>>> m = Matrix(3, 3, [1, 2, 0, 0, 3, 0, 2, -4, 2])
>>> m
Matrix([
[1, 2, 0],
[0, 3, 0],
[2, -4, 2]])
>>> (P, D) = m.diagonalize()
>>> D
Matrix([
[1, 0, 0],
[0, 2, 0],
[0, 0, 3]])
>>> P
Matrix([
[-1, 0, -1],
[ 0, 0, -1],
[ 2, 1, 2]])
>>> P.inv() * m * P
Matrix([
[1, 0, 0],
[0, 2, 0],
[0, 0, 3]])
See Also
========
is_diagonal
is_diagonalizable
"""
from sympy.matrices import diag
if not self.is_square:
raise NonSquareMatrixError()
if not self.is_diagonalizable(reals_only, False):
self._diagonalize_clear_subproducts()
raise MatrixError("Matrix is not diagonalizable")
else:
if self._eigenvects is None:
self._eigenvects = self.eigenvects(simplify=True)
if sort:
self._eigenvects.sort(key=default_sort_key)
self._eigenvects.reverse()
diagvals = []
P = self._new(self.rows, 0, [])
for eigenval, multiplicity, vects in self._eigenvects:
for k in range(multiplicity):
diagvals.append(eigenval)
vec = vects[k]
if normalize:
vec = vec / vec.norm()
P = P.col_insert(P.cols, vec)
D = diag(*diagvals)
self._diagonalize_clear_subproducts()
return (P, D)
[docs] def is_diagonalizable(self, reals_only=False, clear_subproducts=True):
"""Check if matrix is diagonalizable.
If reals_only==True then check that diagonalized matrix consists of the only not complex values.
Some subproducts could be used further in other methods to avoid double calculations,
By default (if clear_subproducts==True) they will be deleted.
Examples
========
>>> from sympy import Matrix
>>> m = Matrix(3, 3, [1, 2, 0, 0, 3, 0, 2, -4, 2])
>>> m
Matrix([
[1, 2, 0],
[0, 3, 0],
[2, -4, 2]])
>>> m.is_diagonalizable()
True
>>> m = Matrix(2, 2, [0, 1, 0, 0])
>>> m
Matrix([
[0, 1],
[0, 0]])
>>> m.is_diagonalizable()
False
>>> m = Matrix(2, 2, [0, 1, -1, 0])
>>> m
Matrix([
[ 0, 1],
[-1, 0]])
>>> m.is_diagonalizable()
True
>>> m.is_diagonalizable(True)
False
See Also
========
is_diagonal
diagonalize
"""
if not self.is_square:
return False
res = False
self._is_symbolic = self.is_symbolic()
self._is_symmetric = self.is_symmetric()
self._eigenvects = None
self._eigenvects = self.eigenvects(simplify=True)
all_iscorrect = True
for eigenval, multiplicity, vects in self._eigenvects:
if len(vects) != multiplicity:
all_iscorrect = False
break
elif reals_only and not eigenval.is_real:
all_iscorrect = False
break
res = all_iscorrect
if clear_subproducts:
self._diagonalize_clear_subproducts()
return res
def _diagonalize_clear_subproducts(self):
del self._is_symbolic
del self._is_symmetric
del self._eigenvects
def jordan_cell(self, eigenval, n):
n = int(n)
from sympy.matrices import MutableMatrix
out = MutableMatrix.zeros(n)
for i in range(n-1):
out[i, i] = eigenval
out[i, i+1] = 1
out[n-1, n-1] = eigenval
return type(self)(out)
def _jordan_block_structure(self):
# To every eigenvalue may belong `i` blocks with size s(i)
# and a chain of generalized eigenvectors
# which will be determined by the following computations:
# for every eigenvalue we will add a dictionary
# containing, for all blocks, the blocksizes and the attached chain vectors
# that will eventually be used to form the transformation P
jordan_block_structures = {}
_eigenvects = self.eigenvects()
ev = self.eigenvals()
if len(ev) == 0:
raise AttributeError("could not compute the eigenvalues")
for eigenval, multiplicity, vects in _eigenvects:
l_jordan_chains={}
geometrical = len(vects)
if geometrical == multiplicity:
# The Jordan chains have all length 1 and consist of only one vector
# which is the eigenvector of course
chains = []
for v in vects:
chain=[v]
chains.append(chain)
l_jordan_chains[1] = chains
jordan_block_structures[eigenval] = l_jordan_chains
elif geometrical == 0:
raise MatrixError("Matrix has the eigen vector with geometrical multiplicity equal zero.")
else:
# Up to now we know nothing about the sizes of the blocks of our Jordan matrix.
# Note that knowledge of algebraic and geometrical multiplicity
# will *NOT* be sufficient to determine this structure.
# The blocksize `s` could be defined as the minimal `k` where
# `kernel(self-lI)^k = kernel(self-lI)^(k+1)`
# The extreme case would be that k = (multiplicity-geometrical+1)
# but the blocks could be smaller.
# Consider for instance the following matrix
# [2 1 0 0]
# [0 2 1 0]
# [0 0 2 0]
# [0 0 0 2]
# which coincides with it own Jordan canonical form.
# It has only one eigenvalue l=2 of (algebraic) multiplicity=4.
# It has two eigenvectors, one belonging to the last row (blocksize 1)
# and one being the last part of a jordan chain of length 3 (blocksize of the first block).
# Note again that it is not not possible to obtain this from the algebraic and geometrical
# multiplicity alone. This only gives us an upper limit for the dimension of one of
# the subspaces (blocksize of according jordan block) given by
# max=(multiplicity-geometrical+1) which is reached for our matrix
# but not for
# [2 1 0 0]
# [0 2 0 0]
# [0 0 2 1]
# [0 0 0 2]
# although multiplicity=4 and geometrical=2 are the same for this matrix.
from sympy.matrices import MutableMatrix
I = MutableMatrix.eye(self.rows)
l = eigenval
M = (self-l*I)
# We will store the matrices `(self-l*I)^k` for further computations
# for convenience only we store `Ms[0]=(sefl-lI)^0=I`
# so the index is the same as the power for all further Ms entries
# We also store the vectors that span these kernels (Ns[0] = [])
# and also their dimensions `a_s`
# this is mainly done for debugging since the number of blocks of a given size
# can be computed from the a_s, in order to check our result which is obtained simpler
# by counting the number of Jordan chains for `a` given `s`
# `a_0` is `dim(Kernel(Ms[0]) = dim (Kernel(I)) = 0` since `I` is regular
l_jordan_chains={}
Ms = [I]
Ns = [[]]
a = [0]
smax = 0
M_new = Ms[-1]*M
Ns_new = M_new.nullspace()
a_new = len(Ns_new)
Ms.append(M_new)
Ns.append(Ns_new)
while a_new > a[-1]: # as long as the nullspaces increase compute further powers
a.append(a_new)
M_new = Ms[-1]*M
Ns_new = M_new.nullspace()
a_new=len(Ns_new)
Ms.append(M_new)
Ns.append(Ns_new)
smax += 1
# We now have `Ms[-1]=((self-l*I)**s)=Z=0`.
# We also know the size of the biggest Jordan block
# associated with `l` to be `s`.
# Now let us proceed with the computation of the associate part of the transformation matrix `P`.
# We already know the kernel (=nullspace) `K_l` of (self-lI) which consists of the
# eigenvectors belonging to eigenvalue `l`.
# The dimension of this space is the geometric multiplicity of eigenvalue `l`.
# For every eigenvector ev out of `K_l`, there exists a subspace that is
# spanned by the Jordan chain of ev. The dimension of this subspace is
# represented by the length `s` of the Jordan block.
# The chain itself is given by `{e_0,..,e_s-1}` where:
# `e_k+1 =(self-lI)e_k (*)`
# and
# `e_s-1=ev`
# So it would be possible to start with the already known `ev` and work backwards until one
# reaches `e_0`. Unfortunately this can not be done by simply solving system (*) since its matrix
# is singular (by definition of the eigenspaces).
# This approach would force us a choose in every step the degree of freedom undetermined
# by (*). This is difficult to implement with computer algebra systems and also quite inefficient.
# We therefore reformulate the problem in terms of nullspaces.
# To do so we start from the other end and choose `e0`'s out of
# `E=Kernel(self-lI)^s / Kernel(self-lI)^(s-1)`
# Note that `Kernel(self-lI)^s = Kernel(Z) = V` (the whole vector space).
# So in the first step `s=smax` this restriction turns out to actually restrict nothing at all
# and the only remaining condition is to choose vectors in `Kernel(self-lI)^(s-1)`.
# Subsequently we compute `e_1=(self-lI)e_0`, `e_2=(self-lI)*e_1` and so on.
# The subspace `E` can have a dimension larger than one.
# That means that we have more than one Jordan block of size `s` for the eigenvalue `l`
# and as many Jordan chains (this is the case in the second example).
# In this case we start as many Jordan chains and have as many blocks of size `s` in the jcf.
# We now have all the Jordan blocks of size `s` but there might be others attached to the same
# eigenvalue that are smaller.
# So we will do the same procedure also for `s-1` and so on until 1 (the lowest possible order
# where the Jordan chain is of length 1 and just represented by the eigenvector).
for s in reversed(range(1, smax+1)):
S = Ms[s]
# We want the vectors in `Kernel((self-lI)^s)`,
# but without those in `Kernel(self-lI)^s-1`
# so we will add their adjoints as additional equations
# to the system formed by `S` to get the orthogonal
# complement.
# (`S` will no longer be quadratic.)
exclude_vectors = Ns[s-1]
for k in range(0, a[s-1]):
S = S.col_join((exclude_vectors[k]).adjoint())
# We also want to exclude the vectors
# in the chains for the bigger blocks
# that we have already computed (if there are any).
# (That is why we start with the biggest s).
# Since Jordan blocks are not orthogonal in general
# (in the original space), only those chain vectors
# that are on level s (index `s-1` in a chain)
# are added.
for chain_list in l_jordan_chains.values():
for chain in chain_list:
S = S.col_join(chain[s-1].adjoint())
e0s = S.nullspace()
# Determine the number of chain leaders
# for blocks of size `s`.
n_e0 = len(e0s)
s_chains = []
# s_cells=[]
for i in range(0, n_e0):
chain=[e0s[i]]
for k in range(1, s):
v = M*chain[k-1]
chain.append(v)
# We want the chain leader appear as the last of the block.
chain.reverse()
s_chains.append(chain)
l_jordan_chains[s] = s_chains
jordan_block_structures[eigenval] = l_jordan_chains
return jordan_block_structures
[docs] def jordan_cells(self, calc_transformation=True):
r"""Return a list of Jordan cells of current matrix.
This list shape Jordan matrix J.
If calc_transformation is specified as False, then transformation P such that
`J = P^{-1} \cdot M \cdot P`
will not be calculated.
Notes
=====
Calculation of transformation P is not implemented yet.
Examples
========
>>> from sympy import Matrix
>>> m = Matrix(4, 4, [
... 6, 5, -2, -3,
... -3, -1, 3, 3,
... 2, 1, -2, -3,
... -1, 1, 5, 5])
>>> P, Jcells = m.jordan_cells()
>>> Jcells[0]
Matrix([
[2, 1],
[0, 2]])
>>> Jcells[1]
Matrix([
[2, 1],
[0, 2]])
See Also
========
jordan_form
"""
n = self.rows
Jcells = []
Pcols_new = []
jordan_block_structures = self._jordan_block_structure()
from sympy.matrices import MutableMatrix
# Order according to default_sort_key, this makes sure the order is the same as in .diagonalize():
for eigenval in (sorted(list(jordan_block_structures.keys()), key=default_sort_key)):
l_jordan_chains = jordan_block_structures[eigenval]
for s in reversed(sorted((l_jordan_chains).keys())): # Start with the biggest block
s_chains = l_jordan_chains[s]
block = self.jordan_cell(eigenval, s)
number_of_s_chains=len(s_chains)
for i in range(0, number_of_s_chains):
Jcells.append(type(self)(block))
chain_vectors = s_chains[i]
lc = len(chain_vectors)
assert lc == s
for j in range(0, lc):
generalized_eigen_vector = chain_vectors[j]
Pcols_new.append(generalized_eigen_vector)
P = MutableMatrix.zeros(n)
for j in range(0, n):
P[:, j] = Pcols_new[j]
return type(self)(P), Jcells
def _jordan_split(self, algebraical, geometrical):
"""Return a list of integers with sum equal to 'algebraical'
and length equal to 'geometrical'"""
n1 = algebraical // geometrical
res = [n1]*geometrical
res[len(res) - 1] += algebraical % geometrical
assert sum(res) == algebraical
return res
[docs] def has(self, *patterns):
"""Test whether any subexpression matches any of the patterns.
Examples
========
>>> from sympy import Matrix, Float
>>> from sympy.abc import x, y
>>> A = Matrix(((1, x), (0.2, 3)))
>>> A.has(x)
True
>>> A.has(y)
False
>>> A.has(Float)
True
"""
return any(a.has(*patterns) for a in self._mat)
[docs] def dual(self):
"""Returns the dual of a matrix, which is:
`(1/2)*levicivita(i, j, k, l)*M(k, l)` summed over indices `k` and `l`
Since the levicivita method is anti_symmetric for any pairwise
exchange of indices, the dual of a symmetric matrix is the zero
matrix. Strictly speaking the dual defined here assumes that the
'matrix' `M` is a contravariant anti_symmetric second rank tensor,
so that the dual is a covariant second rank tensor.
"""
from sympy import LeviCivita
from sympy.matrices import zeros
M, n = self[:, :], self.rows
work = zeros(n)
if self.is_symmetric():
return work
for i in range(1, n):
for j in range(1, n):
acum = 0
for k in range(1, n):
acum += LeviCivita(i, j, 0, k)*M[0, k]
work[i, j] = acum
work[j, i] = -acum
for l in range(1, n):
acum = 0
for a in range(1, n):
for b in range(1, n):
acum += LeviCivita(0, l, a, b)*M[a, b]
acum /= 2
work[0, l] = -acum
work[l, 0] = acum
return work
@classmethod
[docs] def hstack(cls, *args):
"""Return a matrix formed by joining args horizontally (i.e.
by repeated application of row_join).
Examples
========
>>> from sympy.matrices import Matrix, eye
>>> Matrix.hstack(eye(2), 2*eye(2))
Matrix([
[1, 0, 2, 0],
[0, 1, 0, 2]])
"""
return reduce(cls.row_join, args)
@classmethod
[docs] def vstack(cls, *args):
"""Return a matrix formed by joining args vertically (i.e.
by repeated application of col_join).
Examples
========
>>> from sympy.matrices import Matrix, eye
>>> Matrix.vstack(eye(2), 2*eye(2))
Matrix([
[1, 0],
[0, 1],
[2, 0],
[0, 2]])
"""
return reduce(cls.col_join, args)
[docs] def row_join(self, rhs):
"""Concatenates two matrices along self's last and rhs's first column
Examples
========
>>> from sympy import zeros, ones
>>> M = zeros(3)
>>> V = ones(3, 1)
>>> M.row_join(V)
Matrix([
[0, 0, 0, 1],
[0, 0, 0, 1],
[0, 0, 0, 1]])
See Also
========
row
col_join
"""
if self.rows != rhs.rows:
raise ShapeError(
"`self` and `rhs` must have the same number of rows.")
from sympy.matrices import MutableMatrix
newmat = MutableMatrix.zeros(self.rows, self.cols + rhs.cols)
newmat[:, :self.cols] = self
newmat[:, self.cols:] = rhs
return type(self)(newmat)
[docs] def col_join(self, bott):
"""Concatenates two matrices along self's last and bott's first row
Examples
========
>>> from sympy import zeros, ones
>>> M = zeros(3)
>>> V = ones(1, 3)
>>> M.col_join(V)
Matrix([
[0, 0, 0],
[0, 0, 0],
[0, 0, 0],
[1, 1, 1]])
See Also
========
col
row_join
"""
if self.cols != bott.cols:
raise ShapeError(
"`self` and `bott` must have the same number of columns.")
from sympy.matrices import MutableMatrix
newmat = MutableMatrix.zeros(self.rows + bott.rows, self.cols)
newmat[:self.rows, :] = self
newmat[self.rows:, :] = bott
return type(self)(newmat)
[docs] def row_insert(self, pos, mti):
"""Insert one or more rows at the given row position.
Examples
========
>>> from sympy import zeros, ones
>>> M = zeros(3)
>>> V = ones(1, 3)
>>> M.row_insert(1, V)
Matrix([
[0, 0, 0],
[1, 1, 1],
[0, 0, 0],
[0, 0, 0]])
See Also
========
row
col_insert
"""
if pos == 0:
return mti.col_join(self)
elif pos < 0:
pos = self.rows + pos
if pos < 0:
pos = 0
elif pos > self.rows:
pos = self.rows
if self.cols != mti.cols:
raise ShapeError(
"`self` and `mti` must have the same number of columns.")
newmat = self.zeros(self.rows + mti.rows, self.cols)
i, j = pos, pos + mti.rows
newmat[:i, :] = self[:i, :]
newmat[i: j, :] = mti
newmat[j:, :] = self[i:, :]
return newmat
[docs] def col_insert(self, pos, mti):
"""Insert one or more columns at the given column position.
Examples
========
>>> from sympy import zeros, ones
>>> M = zeros(3)
>>> V = ones(3, 1)
>>> M.col_insert(1, V)
Matrix([
[0, 1, 0, 0],
[0, 1, 0, 0],
[0, 1, 0, 0]])
See Also
========
col
row_insert
"""
if pos == 0:
return mti.row_join(self)
elif pos < 0:
pos = self.cols + pos
if pos < 0:
pos = 0
elif pos > self.cols:
pos = self.cols
if self.rows != mti.rows:
raise ShapeError("self and mti must have the same number of rows.")
from sympy.matrices import MutableMatrix
newmat = MutableMatrix.zeros(self.rows, self.cols + mti.cols)
i, j = pos, pos + mti.cols
newmat[:, :i] = self[:, :i]
newmat[:, i:j] = mti
newmat[:, j:] = self[:, i:]
return type(self)(newmat)
[docs] def replace(self, F, G, map=False):
"""Replaces Function F in Matrix entries with Function G.
Examples
========
>>> from sympy import symbols, Function, Matrix
>>> F, G = symbols('F, G', cls=Function)
>>> M = Matrix(2, 2, lambda i, j: F(i+j)) ; M
Matrix([
[F(0), F(1)],
[F(1), F(2)]])
>>> N = M.replace(F,G)
>>> N
Matrix([
[G(0), G(1)],
[G(1), G(2)]])
"""
M = self[:, :]
return M.applyfunc(lambda x: x.replace(F, G, map))
[docs] def pinv(self):
"""Calculate the Moore-Penrose pseudoinverse of the matrix.
The Moore-Penrose pseudoinverse exists and is unique for any matrix.
If the matrix is invertible, the pseudoinverse is the same as the
inverse.
Examples
========
>>> from sympy import Matrix
>>> Matrix([[1, 2, 3], [4, 5, 6]]).pinv()
Matrix([
[-17/18, 4/9],
[ -1/9, 1/9],
[ 13/18, -2/9]])
See Also
========
inv
pinv_solve
References
==========
.. [1] https://en.wikipedia.org/wiki/Moore-Penrose_pseudoinverse
"""
A = self
AH = self.H
# Trivial case: pseudoinverse of all-zero matrix is its transpose.
if A.is_zero:
return AH
try:
if self.rows >= self.cols:
return (AH * A).inv() * AH
else:
return AH * (A * AH).inv()
except ValueError:
# Matrix is not full rank, so A*AH cannot be inverted.
raise NotImplementedError('Rank-deficient matrices are not yet '
'supported.')
[docs] def pinv_solve(self, B, arbitrary_matrix=None):
"""Solve Ax = B using the Moore-Penrose pseudoinverse.
There may be zero, one, or infinite solutions. If one solution
exists, it will be returned. If infinite solutions exist, one will
be returned based on the value of arbitrary_matrix. If no solutions
exist, the least-squares solution is returned.
Parameters
==========
B : Matrix
The right hand side of the equation to be solved for. Must have
the same number of rows as matrix A.
arbitrary_matrix : Matrix
If the system is underdetermined (e.g. A has more columns than
rows), infinite solutions are possible, in terms of an arbitrary
matrix. This parameter may be set to a specific matrix to use
for that purpose; if so, it must be the same shape as x, with as
many rows as matrix A has columns, and as many columns as matrix
B. If left as None, an appropriate matrix containing dummy
symbols in the form of ``wn_m`` will be used, with n and m being
row and column position of each symbol.
Returns
=======
x : Matrix
The matrix that will satisfy Ax = B. Will have as many rows as
matrix A has columns, and as many columns as matrix B.
Examples
========
>>> from sympy import Matrix
>>> A = Matrix([[1, 2, 3], [4, 5, 6]])
>>> B = Matrix([7, 8])
>>> A.pinv_solve(B)
Matrix([
[ _w0_0/6 - _w1_0/3 + _w2_0/6 - 55/18],
[-_w0_0/3 + 2*_w1_0/3 - _w2_0/3 + 1/9],
[ _w0_0/6 - _w1_0/3 + _w2_0/6 + 59/18]])
>>> A.pinv_solve(B, arbitrary_matrix=Matrix([0, 0, 0]))
Matrix([
[-55/18],
[ 1/9],
[ 59/18]])
See Also
========
lower_triangular_solve
upper_triangular_solve
gauss_jordan_solve
cholesky_solve
diagonal_solve
LDLsolve
LUsolve
QRsolve
pinv
Notes
=====
This may return either exact solutions or least squares solutions.
To determine which, check ``A * A.pinv() * B == B``. It will be
True if exact solutions exist, and False if only a least-squares
solution exists. Be aware that the left hand side of that equation
may need to be simplified to correctly compare to the right hand
side.
References
==========
.. [1] https://en.wikipedia.org/wiki/Moore-Penrose_pseudoinverse#Obtaining_all_solutions_of_a_linear_system
"""
from sympy.matrices import eye
A = self
A_pinv = self.pinv()
if arbitrary_matrix is None:
rows, cols = A.cols, B.cols
w = symbols('w:{0}_:{1}'.format(rows, cols), cls=Dummy)
arbitrary_matrix = self.__class__(cols, rows, w).T
return A_pinv * B + (eye(A.cols) - A_pinv*A) * arbitrary_matrix
[docs] def gauss_jordan_solve(self, b, freevar=False):
"""
Solves Ax = b using Gauss Jordan elimination.
There may be zero, one, or infinite solutions. If one solution
exists, it will be returned. If infinite solutions exist, it will
be returned parametrically. If no solutions exist, It will throw
ValueError.
Parameters
==========
b : Matrix
The right hand side of the equation to be solved for. Must have
the same number of rows as matrix A.
freevar : List
If the system is underdetermined (e.g. A has more columns than
rows), infinite solutions are possible, in terms of an arbitrary
values of free variables. Then the index of the free variables
in the solutions (column Matrix) will be returned by freevar, if
the flag `freevar` is set to `True`.
Returns
=======
x : Matrix
The matrix that will satisfy Ax = B. Will have as many rows as
matrix A has columns, and as many columns as matrix B.
params : Matrix
If the system is underdetermined (e.g. A has more columns than
rows), infinite solutions are possible, in terms of an arbitrary
parameters. These arbitrary parameters are returned as params
Matrix.
Examples
========
>>> from sympy import Matrix
>>> A = Matrix([[1, 2, 1, 1], [1, 2, 2, -1], [2, 4, 0, 6]])
>>> b = Matrix([7, 12, 4])
>>> sol, params = A.gauss_jordan_solve(b)
>>> sol
Matrix([
[-2*_tau0 - 3*_tau1 + 2],
[ _tau0],
[ 2*_tau1 + 5],
[ _tau1]])
>>> params
Matrix([
[_tau0],
[_tau1]])
>>> A = Matrix([[1, 2, 3], [4, 5, 6], [7, 8, 10]])
>>> b = Matrix([3, 6, 9])
>>> sol, params = A.gauss_jordan_solve(b)
>>> sol
Matrix([
[-1],
[ 2],
[ 0]])
>>> params
Matrix(0, 1, [])
See Also
========
lower_triangular_solve
upper_triangular_solve
cholesky_solve
diagonal_solve
LDLsolve
LUsolve
QRsolve
pinv
References
==========
.. [1] http://en.wikipedia.org/wiki/Gaussian_elimination
"""
from sympy.matrices import Matrix, zeros
aug = self.hstack(self.copy(), b.copy())
row, col = aug[:, :-1].shape
# solve by reduced row echelon form
A, pivots = aug.rref(simplify=True)
A, v = A[:, :-1], A[:, -1]
pivots = list(filter(lambda p: p < col, pivots))
rank = len(pivots)
# Bring to block form
permutation = Matrix(range(col)).T
A = A.vstack(A, permutation)
for i, c in enumerate(pivots):
A.col_swap(i, c)
A, permutation = A[:-1, :], A[-1, :]
# check for existence of solutions
# rank of aug Matrix should be equal to rank of coefficient matrix
if not v[rank:, 0].is_zero:
raise ValueError("Linear system has no solution")
# Get index of free symbols (free parameters)
free_var_index = permutation[len(pivots):] # non-pivots columns are free variables
# Free parameters
dummygen = numbered_symbols("tau", Dummy)
tau = Matrix([next(dummygen) for k in range(col - rank)]).reshape(col - rank, 1)
# Full parametric solution
V = A[:rank, rank:]
vt = v[:rank, 0]
free_sol = tau.vstack(vt - V*tau, tau)
# Undo permutation
sol = zeros(col, 1)
for k, v in enumerate(free_sol):
sol[permutation[k], 0] = v
if freevar:
return sol, tau, free_var_index
else:
return sol, tau
[docs]def classof(A, B):
"""
Get the type of the result when combining matrices of different types.
Currently the strategy is that immutability is contagious.
Examples
========
>>> from sympy import Matrix, ImmutableMatrix
>>> from sympy.matrices.matrices import classof
>>> M = Matrix([[1, 2], [3, 4]]) # a Mutable Matrix
>>> IM = ImmutableMatrix([[1, 2], [3, 4]])
>>> classof(M, IM)
<class 'sympy.matrices.immutable.ImmutableMatrix'>
"""
try:
if A._class_priority > B._class_priority:
return A.__class__
else:
return B.__class__
except Exception:
pass
try:
import numpy
if isinstance(A, numpy.ndarray):
return B.__class__
if isinstance(B, numpy.ndarray):
return A.__class__
except Exception:
pass
raise TypeError("Incompatible classes %s, %s" % (A.__class__, B.__class__))
[docs]def a2idx(j, n=None):
"""Return integer after making positive and validating against n."""
if type(j) is not int:
try:
j = j.__index__()
except AttributeError:
raise IndexError("Invalid index a[%r]" % (j, ))
if n is not None:
if j < 0:
j += n
if not (j >= 0 and j < n):
raise IndexError("Index out of range: a[%s]" % (j, ))
return int(j)