statsmodels.tsa.statespace.dynamic_factor.DynamicFactor.update¶
-
DynamicFactor.update(params, transformed=True, complex_step=False)[source]¶ Update the parameters of the model
Updates the representation matrices to fill in the new parameter values.
Parameters: params : array_like
Array of new parameters.
transformed : boolean, optional
Whether or not params is already transformed. If set to False, transform_params is called. Default is True..
Returns: params : array_like
Array of parameters.
Notes
Let n = k_endog, m = k_factors, and p = factor_order. Then the params vector has length
.
It is expanded in the following way:- The first
parameters fill out the factor loading
matrix, starting from the [0,0] entry and then proceeding along rows.
These parameters are not modified in transform_params. - The next
parameters provide variances for the error_cov
errors in the observation equation. They fill in the diagonal of the
observation covariance matrix, and are constrained to be positive by
transofrm_params. - The next
parameters are used to create the p
coefficient matrices for the vector autoregression describing the
factor transition. They are transformed in transform_params to
enforce stationarity of the VAR(p). They are placed so as to make
the transition matrix a companion matrix for the VAR. In particular,
we assume that the first
parameters fill the first
coefficient matrix (starting at [0,0] and filling along rows), the
second
parameters fill the second matrix, etc.
- The first
