statsmodels.regression.recursive_ls.RecursiveLSResults¶
-
class
statsmodels.regression.recursive_ls.RecursiveLSResults(model, params, filter_results, cov_type='opg', **kwargs)[source]¶ Class to hold results from fitting a recursive least squares model.
Parameters: model : RecursiveLS instance
The fitted model instance
See also
statsmodels.tsa.statespace.kalman_filter.FilterResults,statsmodels.tsa.statespace.mlemodel.MLEResultsAttributes
specification (dictionary) Dictionary including all attributes from the recursive least squares model instance. Methods
aic()(float) Akaike Information Criterion bic()(float) Bayes Information Criterion bse()conf_int([alpha, cols, method])Returns the confidence interval of the fitted parameters. cov_params([r_matrix, column, scale, cov_p, ...])Returns the variance/covariance matrix. cov_params_approx()(array) The variance / covariance matrix. Computed using the numerical cov_params_oim()(array) The variance / covariance matrix. Computed using the method cov_params_opg()(array) The variance / covariance matrix. Computed using the outer cov_params_robust()(array) The QMLE variance / covariance matrix. Alias for cov_params_robust_approx()(array) The QMLE variance / covariance matrix. Computed using the cov_params_robust_oim()(array) The QMLE variance / covariance matrix. Computed using the cusum()Cumulative sum of standardized recursive residuals statistics cusum_squares()Cumulative sum of squares of standardized recursive residuals f_test(r_matrix[, cov_p, scale, invcov])Compute the F-test for a joint linear hypothesis. fittedvalues()(array) The predicted values of the model. An (nobs x k_endog) array. forecast([steps])Out-of-sample forecasts get_forecast([steps])Out-of-sample forecasts get_prediction([start, end, dynamic])In-sample prediction and out-of-sample forecasting hqic()(float) Hannan-Quinn Information Criterion impulse_responses([steps, impulse, ...])Impulse response function initialize(model, params, **kwd)llf()(float) The value of the log-likelihood function evaluated at params. llf_obs()(float) The value of the log-likelihood function evaluated at params. load(fname)load a pickle, (class method) loglikelihood_burn()(float) The number of observations during which the likelihood is not normalized_cov_params()plot_cusum([alpha, legend_loc, fig, figsize])Plot the CUSUM statistic and significance bounds. plot_cusum_squares([alpha, legend_loc, fig, ...])Plot the CUSUM of squares statistic and significance bounds. plot_diagnostics([variable, lags, fig, figsize])Diagnostic plots for standardized residuals of one endogenous variable plot_recursive_coefficient([variables, ...])Plot the recursively estimated coefficients on a given variable predict([start, end, dynamic])In-sample prediction and out-of-sample forecasting pvalues()(array) The p-values associated with the z-statistics of the remove_data()remove data arrays, all nobs arrays from result and model resid()(array) The model residuals. An (nobs x k_endog) array. resid_recursive()Recursive residuals save(fname[, remove_data])save a pickle of this instance simulate(nsimulations[, measurement_shocks, ...])Simulate a new time series following the state space model summary([alpha, start, title, model_name, ...])Summarize the Model t_test(r_matrix[, cov_p, scale, use_t])Compute a t-test for a each linear hypothesis of the form Rb = q test_heteroskedasticity(method[, ...])Test for heteroskedasticity of standardized residuals test_normality(method)Test for normality of standardized residuals. test_serial_correlation(method[, lags])Ljung-box test for no serial correlation of standardized residuals tvalues()Return the t-statistic for a given parameter estimate. wald_test(r_matrix[, cov_p, scale, invcov, ...])Compute a Wald-test for a joint linear hypothesis. wald_test_terms([skip_single, ...])Compute a sequence of Wald tests for terms over multiple columns zvalues()(array) The z-statistics for the coefficients. Methods
aic()(float) Akaike Information Criterion bic()(float) Bayes Information Criterion bse()conf_int([alpha, cols, method])Returns the confidence interval of the fitted parameters. cov_params([r_matrix, column, scale, cov_p, ...])Returns the variance/covariance matrix. cov_params_approx()(array) The variance / covariance matrix. Computed using the numerical cov_params_oim()(array) The variance / covariance matrix. Computed using the method cov_params_opg()(array) The variance / covariance matrix. Computed using the outer cov_params_robust()(array) The QMLE variance / covariance matrix. Alias for cov_params_robust_approx()(array) The QMLE variance / covariance matrix. Computed using the cov_params_robust_oim()(array) The QMLE variance / covariance matrix. Computed using the cusum()Cumulative sum of standardized recursive residuals statistics cusum_squares()Cumulative sum of squares of standardized recursive residuals f_test(r_matrix[, cov_p, scale, invcov])Compute the F-test for a joint linear hypothesis. fittedvalues()(array) The predicted values of the model. An (nobs x k_endog) array. forecast([steps])Out-of-sample forecasts get_forecast([steps])Out-of-sample forecasts get_prediction([start, end, dynamic])In-sample prediction and out-of-sample forecasting hqic()(float) Hannan-Quinn Information Criterion impulse_responses([steps, impulse, ...])Impulse response function initialize(model, params, **kwd)llf()(float) The value of the log-likelihood function evaluated at params. llf_obs()(float) The value of the log-likelihood function evaluated at params. load(fname)load a pickle, (class method) loglikelihood_burn()(float) The number of observations during which the likelihood is not normalized_cov_params()plot_cusum([alpha, legend_loc, fig, figsize])Plot the CUSUM statistic and significance bounds. plot_cusum_squares([alpha, legend_loc, fig, ...])Plot the CUSUM of squares statistic and significance bounds. plot_diagnostics([variable, lags, fig, figsize])Diagnostic plots for standardized residuals of one endogenous variable plot_recursive_coefficient([variables, ...])Plot the recursively estimated coefficients on a given variable predict([start, end, dynamic])In-sample prediction and out-of-sample forecasting pvalues()(array) The p-values associated with the z-statistics of the remove_data()remove data arrays, all nobs arrays from result and model resid()(array) The model residuals. An (nobs x k_endog) array. resid_recursive()Recursive residuals save(fname[, remove_data])save a pickle of this instance simulate(nsimulations[, measurement_shocks, ...])Simulate a new time series following the state space model summary([alpha, start, title, model_name, ...])Summarize the Model t_test(r_matrix[, cov_p, scale, use_t])Compute a t-test for a each linear hypothesis of the form Rb = q test_heteroskedasticity(method[, ...])Test for heteroskedasticity of standardized residuals test_normality(method)Test for normality of standardized residuals. test_serial_correlation(method[, lags])Ljung-box test for no serial correlation of standardized residuals tvalues()Return the t-statistic for a given parameter estimate. wald_test(r_matrix[, cov_p, scale, invcov, ...])Compute a Wald-test for a joint linear hypothesis. wald_test_terms([skip_single, ...])Compute a sequence of Wald tests for terms over multiple columns zvalues()(array) The z-statistics for the coefficients. Attributes
recursive_coefficientsEstimates of regression coefficients, recursively estimated use_t
