statsmodels.regression.mixed_linear_model.MixedLMResults¶
-
class
statsmodels.regression.mixed_linear_model.MixedLMResults(model, params, cov_params)[source]¶ Class to contain results of fitting a linear mixed effects model.
MixedLMResults inherits from statsmodels.LikelihoodModelResults
Parameters: See statsmodels.LikelihoodModelResults
Returns: Attributes
model : class instance
Pointer to PHreg model instance that called fit.
normalized_cov_params : array
The sampling covariance matrix of the estimates
fe_params : array
The fitted fixed-effects coefficients
re_params : array
The fitted random-effects covariance matrix
bse_fe : array
The standard errors of the fitted fixed effects coefficients
bse_re : array
The standard errors of the fitted random effects covariance matrix
See also
statsmodels.LikelihoodModelResultsMethods
aic()bic()bootstrap([nrep, method, disp, store])simple bootstrap to get mean and variance of estimator bse()bse_fe()Returns the standard errors of the fixed effect regression coefficients. bse_re()Returns the standard errors of the variance parameters. bsejac()standard deviation of parameter estimates based on covjac bsejhj()standard deviation of parameter estimates based on covHJH conf_int([alpha, cols, method])Returns the confidence interval of the fitted parameters. cov_params([r_matrix, column, scale, cov_p, ...])Returns the variance/covariance matrix. covjac()covariance of parameters based on outer product of jacobian of covjhj()covariance of parameters based on HJJH df_modelwc()f_test(r_matrix[, cov_p, scale, invcov])Compute the F-test for a joint linear hypothesis. fittedvalues()Returns the fitted values for the model. get_nlfun(fun)hessv()cached Hessian of log-likelihood initialize(model, params, **kwd)jacv(*args, **kwds)jacv is deprecated, use score_obsv instead! llf()load(fname)load a pickle, (class method) normalized_cov_params()predict([exog, transform])Call self.model.predict with self.params as the first argument. profile_re(re_ix, vtype[, num_low, ...])Profile-likelihood inference for variance parameters. pvalues()random_effects()The conditional means of random effects given the data. random_effects_cov()Returns the conditional covariance matrix of the random effects for each group given the data. remove_data()remove data arrays, all nobs arrays from result and model resid()Returns the residuals for the model. save(fname[, remove_data])save a pickle of this instance score_obsv()cached Jacobian of log-likelihood summary([yname, xname_fe, xname_re, title, ...])Summarize the mixed model regression results. t_test(r_matrix[, scale, use_t])Compute a t-test for a each linear hypothesis of the form Rb = q tvalues()Return the t-statistic for a given parameter estimate. wald_test(r_matrix[, cov_p, scale, invcov, ...])Compute a Wald-test for a joint linear hypothesis. wald_test_terms([skip_single, ...])Compute a sequence of Wald tests for terms over multiple columns Methods
aic()bic()bootstrap([nrep, method, disp, store])simple bootstrap to get mean and variance of estimator bse()bse_fe()Returns the standard errors of the fixed effect regression coefficients. bse_re()Returns the standard errors of the variance parameters. bsejac()standard deviation of parameter estimates based on covjac bsejhj()standard deviation of parameter estimates based on covHJH conf_int([alpha, cols, method])Returns the confidence interval of the fitted parameters. cov_params([r_matrix, column, scale, cov_p, ...])Returns the variance/covariance matrix. covjac()covariance of parameters based on outer product of jacobian of covjhj()covariance of parameters based on HJJH df_modelwc()f_test(r_matrix[, cov_p, scale, invcov])Compute the F-test for a joint linear hypothesis. fittedvalues()Returns the fitted values for the model. get_nlfun(fun)hessv()cached Hessian of log-likelihood initialize(model, params, **kwd)jacv(*args, **kwds)jacv is deprecated, use score_obsv instead! llf()load(fname)load a pickle, (class method) normalized_cov_params()predict([exog, transform])Call self.model.predict with self.params as the first argument. profile_re(re_ix, vtype[, num_low, ...])Profile-likelihood inference for variance parameters. pvalues()random_effects()The conditional means of random effects given the data. random_effects_cov()Returns the conditional covariance matrix of the random effects for each group given the data. remove_data()remove data arrays, all nobs arrays from result and model resid()Returns the residuals for the model. save(fname[, remove_data])save a pickle of this instance score_obsv()cached Jacobian of log-likelihood summary([yname, xname_fe, xname_re, title, ...])Summarize the mixed model regression results. t_test(r_matrix[, scale, use_t])Compute a t-test for a each linear hypothesis of the form Rb = q tvalues()Return the t-statistic for a given parameter estimate. wald_test(r_matrix[, cov_p, scale, invcov, ...])Compute a Wald-test for a joint linear hypothesis. wald_test_terms([skip_single, ...])Compute a sequence of Wald tests for terms over multiple columns Attributes
use_t
