statsmodels.miscmodels.tmodel.TLinearModel¶
-
class
statsmodels.miscmodels.tmodel.TLinearModel(endog, exog=None, loglike=None, score=None, hessian=None, missing='none', extra_params_names=None, **kwds)[source]¶ Maximum Likelihood Estimation of Linear Model with t-distributed errors
This is an example for generic MLE.
Except for defining the negative log-likelihood method, all methods and results are generic. Gradients and Hessian and all resulting statistics are based on numerical differentiation.
Attributes
endog_namesNames of endogenous variables exog_namesNames of exogenous variables Methods
expandparams(params)expand to full parameter array when some parameters are fixed fit([start_params, method, maxiter, ...])Fit the model using maximum likelihood. from_formula(formula, data[, subset, drop_cols])Create a Model from a formula and dataframe. hessian(params)Hessian of log-likelihood evaluated at params information(params)Fisher information matrix of model initialize()jac(*args, **kwds)jac is deprecated, use score_obs instead! loglike(params)loglikeobs(params)nloglike(params)nloglikeobs(params)Loglikelihood of linear model with t distributed errors. predict(params[, exog])reduceparams(params)score(params)Gradient of log-likelihood evaluated at params score_obs(params, **kwds)Jacobian/Gradient of log-likelihood evaluated at params for each observation. Methods
expandparams(params)expand to full parameter array when some parameters are fixed fit([start_params, method, maxiter, ...])Fit the model using maximum likelihood. from_formula(formula, data[, subset, drop_cols])Create a Model from a formula and dataframe. hessian(params)Hessian of log-likelihood evaluated at params information(params)Fisher information matrix of model initialize()jac(*args, **kwds)jac is deprecated, use score_obs instead! loglike(params)loglikeobs(params)nloglike(params)nloglikeobs(params)Loglikelihood of linear model with t distributed errors. predict(params[, exog])reduceparams(params)score(params)Gradient of log-likelihood evaluated at params score_obs(params, **kwds)Jacobian/Gradient of log-likelihood evaluated at params for each observation. Attributes
endog_namesNames of endogenous variables exog_namesNames of exogenous variables
