statsmodels.discrete.discrete_model.Probit.score¶
-
Probit.score(params)[source]¶ Probit model score (gradient) vector
Parameters: params : array-like
The parameters of the model
Returns: score : ndarray, 1-D
The score vector of the model, i.e. the first derivative of the loglikelihood function, evaluated at params
Notes
![\frac{\partial\ln L}{\partial\beta}=\sum_{i=1}^{n}\left[\frac{q_{i}\phi\left(q_{i}x_{i}^{\prime}\beta\right)}{\Phi\left(q_{i}x_{i}^{\prime}\beta\right)}\right]x_{i}](../_images/math/cf658611d638a983609aaa15921331e133b8c1b3.png)
Where
. This simplification comes from the fact that the
normal distribution is symmetric.
