statsmodels.discrete.discrete_model.BinaryModel¶
-
class
statsmodels.discrete.discrete_model.BinaryModel(endog, exog, **kwargs)[source]¶ Attributes
endog_namesNames of endogenous variables exog_namesNames of exogenous variables Methods
cdf(X)The cumulative distribution function of the model. cov_params_func_l1(likelihood_model, xopt, ...)Computes cov_params on a reduced parameter space corresponding to the nonzero parameters resulting from the l1 regularized fit. fit([start_params, method, maxiter, ...])Fit the model using maximum likelihood. fit_regularized([start_params, method, ...])Fit the model using a regularized maximum likelihood. from_formula(formula, data[, subset, drop_cols])Create a Model from a formula and dataframe. hessian(params)The Hessian matrix of the model information(params)Fisher information matrix of model initialize()Initialize is called by statsmodels.model.LikelihoodModel.__init__ and should contain any preprocessing that needs to be done for a model. loglike(params)Log-likelihood of model. pdf(X)The probability density (mass) function of the model. predict(params[, exog, linear])Predict response variable of a model given exogenous variables. score(params)Score vector of model. Methods
cdf(X)The cumulative distribution function of the model. cov_params_func_l1(likelihood_model, xopt, ...)Computes cov_params on a reduced parameter space corresponding to the nonzero parameters resulting from the l1 regularized fit. fit([start_params, method, maxiter, ...])Fit the model using maximum likelihood. fit_regularized([start_params, method, ...])Fit the model using a regularized maximum likelihood. from_formula(formula, data[, subset, drop_cols])Create a Model from a formula and dataframe. hessian(params)The Hessian matrix of the model information(params)Fisher information matrix of model initialize()Initialize is called by statsmodels.model.LikelihoodModel.__init__ and should contain any preprocessing that needs to be done for a model. loglike(params)Log-likelihood of model. pdf(X)The probability density (mass) function of the model. predict(params[, exog, linear])Predict response variable of a model given exogenous variables. score(params)Score vector of model. Attributes
endog_namesNames of endogenous variables exog_namesNames of exogenous variables
