Discrete Laplacian Distribution¶
Defined over all integers for a>0
p(k)=tanh(a2)e−a|k|,F(x)={ea(⌊x⌋+1)ea+1⌊x⌋<0,1−e−a⌊x⌋ea+1⌊x⌋≥0.G(q)={⌈1alog[q(ea+1)]−1⌉q<11+e−a,⌈−1alog[(1−q)(1+ea)]⌉q≥11+e−a.
M(t)=tanh(a2)∞∑k=−∞etke−a|k|=C(1+∞∑k=1e−(t+a)k+∞∑1e(t−a)k)=tanh(a2)(1+e−(t+a)1−e−(t+a)+et−a1−et−a)=tanh(a2)sinhacosha−cosht.
Thus,
μ′n=M(n)(0)=[1+(−1)n]Li−n(e−a)
where Li−n(z) is the polylogarithm function of order −n evaluated at z.
h[X]=−log(tanh(a2))+asinha
Implementation: scipy.stats.dlaplace