Processing math: 100%

Gilbrat Distribution

Special case of the log-normal with σ=1 and S=1.0 (typically also L=0.0 )

f(x;σ)=1x2πexp[12(logx)2]F(x;σ)=Φ(logx)=12[1+erf(logx2)]G(q;σ)=exp{Φ1(q)}
μ=eμ2=e[e1]γ1=e1(2+e)γ2=e4+2e3+3e26
h[X]=log(2πe)1.4189385332046727418

Implementation: scipy.stats.gilbrat