Gilbrat Distribution¶
Special case of the log-normal with σ=1 and S=1.0 (typically also L=0.0 )
f(x;σ)=1x√2πexp[−12(logx)2]F(x;σ)=Φ(logx)=12[1+erf(logx√2)]G(q;σ)=exp{Φ−1(q)}
μ=√eμ2=e[e−1]γ1=√e−1(2+e)γ2=e4+2e3+3e2−6
h[X]=log(√2πe)≈1.4189385332046727418
Implementation: scipy.stats.gilbrat