Processing math: 100%

Generalized Logistic Distribution

Has been used in the analysis of extreme values. Has one shape parameter c>0. And x>0

f(x;c)=cexp(x)[1+exp(x)]c+1F(x;c)=1[1+exp(x)]cG(q;c)=log(q1/c1)
M(t)=c1t2F1(1+c,1t;2t;1)
μ=γ+ψ0(c)μ2=π26+ψ1(c)γ1=ψ2(c)+2ζ(3)μ3/22γ2=(π415+ψ3(c))μ22md=logcmn=log(21/c1)

Note that the polygamma function is

ψn(z)=dn+1dzn+1logΓ(z)=(1)n+1n!k=01(z+k)n+1=(1)n+1n!ζ(n+1,z)

where ζ(k,x) is a generalization of the Riemann zeta function called the Hurwitz zeta function Note that ζ(n)ζ(n,1)

Implementation: scipy.stats.genlogistic