Generalized Extreme Value Distribution¶
Extreme value distributions with shape parameter c .
For c>0 defined on −∞<x≤1/c.
f(x;c)=exp[−(1−cx)1/c](1−cx)1/c−1F(x;c)=exp[−(1−cx)1/c]G(q;c)=1c[1−(−logq)c]
μ′n=1cnn∑k=0(nk)(−1)kΓ(ck+1)cn>−1
So,
μ′1=1c(1−Γ(1+c))c>−1μ′2=1c2(1−2Γ(1+c)+Γ(1+2c))c>−12μ′3=1c3(1−3Γ(1+c)+3Γ(1+2c)−Γ(1+3c))c>−13μ′4=1c4(1−4Γ(1+c)+6Γ(1+2c)−4Γ(1+3c)+Γ(1+4c))c>−14
For c<0 defined on 1c≤x<∞. For c=0 defined over all space
f(x;0)=exp[−e−x]e−xF(x;0)=exp[−e−x]G(q;0)=−log(−logq)
This is just the (left-skewed) Gumbel distribution for c=0.
μ=γ=−ψ0(1)μ2=π26γ1=12√6π3ζ(3)γ2=125
Implementation: scipy.stats.genextreme