Loading [MathJax]/jax/output/HTML-CSS/jax.js

Generalized Extreme Value Distribution

Extreme value distributions with shape parameter c .

For c>0 defined on <x1/c.

f(x;c)=exp[(1cx)1/c](1cx)1/c1F(x;c)=exp[(1cx)1/c]G(q;c)=1c[1(logq)c]
μn=1cnnk=0(nk)(1)kΓ(ck+1)cn>1

So,

μ1=1c(1Γ(1+c))c>1μ2=1c2(12Γ(1+c)+Γ(1+2c))c>12μ3=1c3(13Γ(1+c)+3Γ(1+2c)Γ(1+3c))c>13μ4=1c4(14Γ(1+c)+6Γ(1+2c)4Γ(1+3c)+Γ(1+4c))c>14

For c<0 defined on 1cx<. For c=0 defined over all space

f(x;0)=exp[ex]exF(x;0)=exp[ex]G(q;0)=log(logq)

This is just the (left-skewed) Gumbel distribution for c=0.

μ=γ=ψ0(1)μ2=π26γ1=126π3ζ(3)γ2=125

Implementation: scipy.stats.genextreme