Fisk (Log Logistic) Distribution¶
Special case of the Burr distribution with d=1
c>0k=Γ(1−2c)Γ(2c+1)−Γ2(1−1c)Γ2(1c+1)
f(x;c,d)=cxc−1(1+xc)2I(0,∞)(x)F(x;c,d)=(1+x−c)−1G(α;c,d)=(α−1−1)−1/cμ=Γ(1−1c)Γ(1c+1)μ2=kγ1=1√k3[2Γ3(1−1c)Γ3(1c+1)+Γ(1−3c)Γ(3c+1)−3Γ(1−2c)Γ(1−1c)Γ(1c+1)Γ(2c+1)]γ2=−3+1k2[6Γ(1−2c)Γ2(1−1c)Γ2(1c+1)Γ(2c+1)−3Γ4(1−1c)Γ4(1c+1)+Γ(1−4c)Γ(4c+1)−4Γ(1−3c)Γ(1−1c)Γ(1c+1)Γ(3c+1)]md=(c−1c+1)1/cifc>1otherwise0mn=1
h[X]=2−logc.
Implementation: scipy.stats.fisk