<html><head><meta name="color-scheme" content="light dark"></head><body><pre style="word-wrap: break-word; white-space: pre-wrap;"># Draw samples from the distribution:

a = 5. # shape
samples = 1000
s = np.random.power(a, samples)

# Display the histogram of the samples, along with
# the probability density function:

import matplotlib.pyplot as plt
count, bins, ignored = plt.hist(s, bins=30)
x = np.linspace(0, 1, 100)
y = a*x**(a-1.)
normed_y = samples*np.diff(bins)[0]*y
plt.plot(x, normed_y)
plt.show()

# Compare the power function distribution to the inverse of the Pareto.

from scipy import stats
rvs = np.random.power(5, 1000000)
rvsp = np.random.pareto(5, 1000000)
xx = np.linspace(0,1,100)
powpdf = stats.powerlaw.pdf(xx,5)

plt.figure()
plt.hist(rvs, bins=50, normed=True)
plt.plot(xx,powpdf,'r-')
plt.title('np.random.power(5)')

plt.figure()
plt.hist(1./(1.+rvsp), bins=50, normed=True)
plt.plot(xx,powpdf,'r-')
plt.title('inverse of 1 + np.random.pareto(5)')

plt.figure()
plt.hist(1./(1.+rvsp), bins=50, normed=True)
plt.plot(xx,powpdf,'r-')
plt.title('inverse of stats.pareto(5)')
</pre></body></html>