.. _statistics-boxplot_demo:

statistics example code: boxplot_demo.py
========================================



.. plot:: /home/tcaswell/source/p/matplotlib/doc/mpl_examples/statistics/boxplot_demo.py

::

    """
    =========================================
    Demo of artist customization in box plots
    =========================================
    
    This example demonstrates how to use the various kwargs
    to fully customize box plots. The first figure demonstrates
    how to remove and add individual components (note that the
    mean is the only value not shown by default). The second
    figure demonstrates how the styles of the artists can
    be customized. It also demonstrates how to set the limit
    of the whiskers to specific percentiles (lower right axes)
    
    A good general reference on boxplots and their history can be found
    here: http://vita.had.co.nz/papers/boxplots.pdf
    
    """
    
    import numpy as np
    import matplotlib.pyplot as plt
    
    # fake data
    np.random.seed(937)
    data = np.random.lognormal(size=(37, 4), mean=1.5, sigma=1.75)
    labels = list('ABCD')
    fs = 10  # fontsize
    
    # demonstrate how to toggle the display of different elements:
    fig, axes = plt.subplots(nrows=2, ncols=3, figsize=(6, 6), sharey=True)
    axes[0, 0].boxplot(data, labels=labels)
    axes[0, 0].set_title('Default', fontsize=fs)
    
    axes[0, 1].boxplot(data, labels=labels, showmeans=True)
    axes[0, 1].set_title('showmeans=True', fontsize=fs)
    
    axes[0, 2].boxplot(data, labels=labels, showmeans=True, meanline=True)
    axes[0, 2].set_title('showmeans=True,\nmeanline=True', fontsize=fs)
    
    axes[1, 0].boxplot(data, labels=labels, showbox=False, showcaps=False)
    tufte_title = 'Tufte Style \n(showbox=False,\nshowcaps=False)'
    axes[1, 0].set_title(tufte_title, fontsize=fs)
    
    axes[1, 1].boxplot(data, labels=labels, notch=True, bootstrap=10000)
    axes[1, 1].set_title('notch=True,\nbootstrap=10000', fontsize=fs)
    
    axes[1, 2].boxplot(data, labels=labels, showfliers=False)
    axes[1, 2].set_title('showfliers=False', fontsize=fs)
    
    for ax in axes.flatten():
        ax.set_yscale('log')
        ax.set_yticklabels([])
    
    fig.subplots_adjust(hspace=0.4)
    plt.show()
    
    
    # demonstrate how to customize the display different elements:
    boxprops = dict(linestyle='--', linewidth=3, color='darkgoldenrod')
    flierprops = dict(marker='o', markerfacecolor='green', markersize=12,
                      linestyle='none')
    medianprops = dict(linestyle='-.', linewidth=2.5, color='firebrick')
    meanpointprops = dict(marker='D', markeredgecolor='black',
                          markerfacecolor='firebrick')
    meanlineprops = dict(linestyle='--', linewidth=2.5, color='purple')
    
    fig, axes = plt.subplots(nrows=2, ncols=3, figsize=(6, 6), sharey=True)
    axes[0, 0].boxplot(data, boxprops=boxprops)
    axes[0, 0].set_title('Custom boxprops', fontsize=fs)
    
    axes[0, 1].boxplot(data, flierprops=flierprops, medianprops=medianprops)
    axes[0, 1].set_title('Custom medianprops\nand flierprops', fontsize=fs)
    
    axes[0, 2].boxplot(data, whis='range')
    axes[0, 2].set_title('whis="range"', fontsize=fs)
    
    axes[1, 0].boxplot(data, meanprops=meanpointprops, meanline=False,
                       showmeans=True)
    axes[1, 0].set_title('Custom mean\nas point', fontsize=fs)
    
    axes[1, 1].boxplot(data, meanprops=meanlineprops, meanline=True,
                       showmeans=True)
    axes[1, 1].set_title('Custom mean\nas line', fontsize=fs)
    
    axes[1, 2].boxplot(data, whis=[15, 85])
    axes[1, 2].set_title('whis=[15, 85]\n#percentiles', fontsize=fs)
    
    for ax in axes.flatten():
        ax.set_yscale('log')
        ax.set_yticklabels([])
    
    fig.suptitle("I never said they'd be pretty")
    fig.subplots_adjust(hspace=0.4)
    plt.show()
    

Keywords: python, matplotlib, pylab, example, codex (see :ref:`how-to-search-examples`)