.. _api-filled_step:

api example code: filled_step.py
================================



.. plot:: /home/tcaswell/source/p/matplotlib/doc/mpl_examples/api/filled_step.py

::

    """
    =========================
    Hatch-filled histograms
    =========================
    
    This example showcases the hatching capabilities of matplotlib by plotting
    various histograms.
    """
    
    import itertools
    from collections import OrderedDict
    from functools import partial
    
    import numpy as np
    import matplotlib.pyplot as plt
    import matplotlib.ticker as mticker
    from cycler import cycler
    from six.moves import zip
    
    
    def filled_hist(ax, edges, values, bottoms=None, orientation='v',
                    **kwargs):
        """
        Draw a histogram as a stepped patch.
    
        Extra kwargs are passed through to `fill_between`
    
        Parameters
        ----------
        ax : Axes
            The axes to plot to
    
        edges : array
            A length n+1 array giving the left edges of each bin and the
            right edge of the last bin.
    
        values : array
            A length n array of bin counts or values
    
        bottoms : scalar or array, optional
            A length n array of the bottom of the bars.  If None, zero is used.
    
        orientation : {'v', 'h'}
           Orientation of the histogram.  'v' (default) has
           the bars increasing in the positive y-direction.
    
        Returns
        -------
        ret : PolyCollection
            Artist added to the Axes
        """
        print(orientation)
        if orientation not in set('hv'):
            raise ValueError("orientation must be in {{'h', 'v'}} "
                             "not {o}".format(o=orientation))
    
        kwargs.setdefault('step', 'post')
        edges = np.asarray(edges)
        values = np.asarray(values)
        if len(edges) - 1 != len(values):
            raise ValueError('Must provide one more bin edge than value not: '
                             'len(edges): {lb} len(values): {lv}'.format(
                                 lb=len(edges), lv=len(values)))
    
        if bottoms is None:
            bottoms = np.zeros_like(values)
        if np.isscalar(bottoms):
            bottoms = np.ones_like(values) * bottoms
    
        values = np.r_[values, values[-1]]
        bottoms = np.r_[bottoms, bottoms[-1]]
        if orientation == 'h':
            return ax.fill_betweenx(edges, values, bottoms,
                                    **kwargs)
        elif orientation == 'v':
            return ax.fill_between(edges, values, bottoms,
                                   **kwargs)
        else:
            raise AssertionError("you should never be here")
    
    
    def stack_hist(ax, stacked_data, sty_cycle, bottoms=None,
                   hist_func=None, labels=None,
                   plot_func=None, plot_kwargs=None):
        """
        ax : axes.Axes
            The axes to add artists too
    
        stacked_data : array or Mapping
            A (N, M) shaped array.  The first dimension will be iterated over to
            compute histograms row-wise
    
        sty_cycle : Cycler or operable of dict
            Style to apply to each set
    
        bottoms : array, optional
            The initial positions of the bottoms, defaults to 0
    
        hist_func : callable, optional
            Must have signature `bin_vals, bin_edges = f(data)`.
            `bin_edges` expected to be one longer than `bin_vals`
    
        labels : list of str, optional
            The label for each set.
    
            If not given and stacked data is an array defaults to 'default set {n}'
    
            If stacked_data is a mapping, and labels is None, default to the keys
            (which may come out in a random order).
    
            If stacked_data is a mapping and labels is given then only
            the columns listed by be plotted.
    
        plot_func : callable, optional
            Function to call to draw the histogram must have signature:
    
              ret = plot_func(ax, edges, top, bottoms=bottoms,
                              label=label, **kwargs)
    
        plot_kwargs : dict, optional
            Any extra kwargs to pass through to the plotting function.  This
            will be the same for all calls to the plotting function and will
            over-ride the values in cycle.
    
        Returns
        -------
        arts : dict
            Dictionary of artists keyed on their labels
        """
        # deal with default binning function
        if hist_func is None:
            hist_func = np.histogram
    
        # deal with default plotting function
        if plot_func is None:
            plot_func = filled_hist
    
        # deal with default
        if plot_kwargs is None:
            plot_kwargs = {}
        print(plot_kwargs)
        try:
            l_keys = stacked_data.keys()
            label_data = True
            if labels is None:
                labels = l_keys
    
        except AttributeError:
            label_data = False
            if labels is None:
                labels = itertools.repeat(None)
    
        if label_data:
            loop_iter = enumerate((stacked_data[lab], lab, s) for lab, s in
                                  zip(labels, sty_cycle))
        else:
            loop_iter = enumerate(zip(stacked_data, labels, sty_cycle))
    
        arts = {}
        for j, (data, label, sty) in loop_iter:
            if label is None:
                label = 'dflt set {n}'.format(n=j)
            label = sty.pop('label', label)
            vals, edges = hist_func(data)
            if bottoms is None:
                bottoms = np.zeros_like(vals)
            top = bottoms + vals
            print(sty)
            sty.update(plot_kwargs)
            print(sty)
            ret = plot_func(ax, edges, top, bottoms=bottoms,
                            label=label, **sty)
            bottoms = top
            arts[label] = ret
        ax.legend(fontsize=10)
        return arts
    
    
    # set up histogram function to fixed bins
    edges = np.linspace(-3, 3, 20, endpoint=True)
    hist_func = partial(np.histogram, bins=edges)
    
    # set up style cycles
    color_cycle = cycler(facecolor=plt.rcParams['axes.prop_cycle'][:4])
    label_cycle = cycler('label', ['set {n}'.format(n=n) for n in range(4)])
    hatch_cycle = cycler('hatch', ['/', '*', '+', '|'])
    
    # make some synthetic data
    np.random.seed(0)
    stack_data = np.random.randn(4, 12250)
    dict_data = OrderedDict(zip((c['label'] for c in label_cycle), stack_data))
    
    # work with plain arrays
    fig, (ax1, ax2) = plt.subplots(1, 2, figsize=(9, 4.5), tight_layout=True)
    arts = stack_hist(ax1, stack_data, color_cycle + label_cycle + hatch_cycle,
                      hist_func=hist_func)
    
    arts = stack_hist(ax2, stack_data, color_cycle,
                      hist_func=hist_func,
                      plot_kwargs=dict(edgecolor='w', orientation='h'))
    ax1.set_ylabel('counts')
    ax1.set_xlabel('x')
    ax2.set_xlabel('counts')
    ax2.set_ylabel('x')
    
    # work with labeled data
    
    fig, (ax1, ax2) = plt.subplots(1, 2, figsize=(9, 4.5),
                                   tight_layout=True, sharey=True)
    
    arts = stack_hist(ax1, dict_data, color_cycle + hatch_cycle,
                      hist_func=hist_func)
    
    arts = stack_hist(ax2, dict_data, color_cycle + hatch_cycle,
                      hist_func=hist_func, labels=['set 0', 'set 3'])
    ax1.xaxis.set_major_locator(mticker.MaxNLocator(5))
    ax1.set_xlabel('counts')
    ax1.set_ylabel('x')
    ax2.set_ylabel('x')
    
    plt.show()
    

Keywords: python, matplotlib, pylab, example, codex (see :ref:`how-to-search-examples`)