SmoothingPolynomialBicubicSplineInterpolator.java
- /*
- * Licensed to the Apache Software Foundation (ASF) under one or more
- * contributor license agreements. See the NOTICE file distributed with
- * this work for additional information regarding copyright ownership.
- * The ASF licenses this file to You under the Apache License, Version 2.0
- * (the "License"); you may not use this file except in compliance with
- * the License. You may obtain a copy of the License at
- *
- * http://www.apache.org/licenses/LICENSE-2.0
- *
- * Unless required by applicable law or agreed to in writing, software
- * distributed under the License is distributed on an "AS IS" BASIS,
- * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- * See the License for the specific language governing permissions and
- * limitations under the License.
- */
- package org.apache.commons.math3.analysis.interpolation;
- import org.apache.commons.math3.exception.DimensionMismatchException;
- import org.apache.commons.math3.exception.NoDataException;
- import org.apache.commons.math3.exception.NonMonotonicSequenceException;
- import org.apache.commons.math3.exception.NotPositiveException;
- import org.apache.commons.math3.exception.NullArgumentException;
- import org.apache.commons.math3.util.MathArrays;
- import org.apache.commons.math3.util.Precision;
- import org.apache.commons.math3.optim.nonlinear.vector.jacobian.GaussNewtonOptimizer;
- import org.apache.commons.math3.fitting.PolynomialFitter;
- import org.apache.commons.math3.analysis.polynomials.PolynomialFunction;
- import org.apache.commons.math3.optim.SimpleVectorValueChecker;
- /**
- * Generates a bicubic interpolation function.
- * Prior to generating the interpolating function, the input is smoothed using
- * polynomial fitting.
- *
- * @since 2.2
- * @deprecated To be removed in 4.0 (see MATH-1166).
- */
- @Deprecated
- public class SmoothingPolynomialBicubicSplineInterpolator
- extends BicubicSplineInterpolator {
- /** Fitter for x. */
- private final PolynomialFitter xFitter;
- /** Degree of the fitting polynomial. */
- private final int xDegree;
- /** Fitter for y. */
- private final PolynomialFitter yFitter;
- /** Degree of the fitting polynomial. */
- private final int yDegree;
- /**
- * Default constructor. The degree of the fitting polynomials is set to 3.
- */
- public SmoothingPolynomialBicubicSplineInterpolator() {
- this(3);
- }
- /**
- * @param degree Degree of the polynomial fitting functions.
- * @exception NotPositiveException if degree is not positive
- */
- public SmoothingPolynomialBicubicSplineInterpolator(int degree)
- throws NotPositiveException {
- this(degree, degree);
- }
- /**
- * @param xDegree Degree of the polynomial fitting functions along the
- * x-dimension.
- * @param yDegree Degree of the polynomial fitting functions along the
- * y-dimension.
- * @exception NotPositiveException if degrees are not positive
- */
- public SmoothingPolynomialBicubicSplineInterpolator(int xDegree, int yDegree)
- throws NotPositiveException {
- if (xDegree < 0) {
- throw new NotPositiveException(xDegree);
- }
- if (yDegree < 0) {
- throw new NotPositiveException(yDegree);
- }
- this.xDegree = xDegree;
- this.yDegree = yDegree;
- final double safeFactor = 1e2;
- final SimpleVectorValueChecker checker
- = new SimpleVectorValueChecker(safeFactor * Precision.EPSILON,
- safeFactor * Precision.SAFE_MIN);
- xFitter = new PolynomialFitter(new GaussNewtonOptimizer(false, checker));
- yFitter = new PolynomialFitter(new GaussNewtonOptimizer(false, checker));
- }
- /**
- * {@inheritDoc}
- */
- @Override
- public BicubicSplineInterpolatingFunction interpolate(final double[] xval,
- final double[] yval,
- final double[][] fval)
- throws NoDataException, NullArgumentException,
- DimensionMismatchException, NonMonotonicSequenceException {
- if (xval.length == 0 || yval.length == 0 || fval.length == 0) {
- throw new NoDataException();
- }
- if (xval.length != fval.length) {
- throw new DimensionMismatchException(xval.length, fval.length);
- }
- final int xLen = xval.length;
- final int yLen = yval.length;
- for (int i = 0; i < xLen; i++) {
- if (fval[i].length != yLen) {
- throw new DimensionMismatchException(fval[i].length, yLen);
- }
- }
- MathArrays.checkOrder(xval);
- MathArrays.checkOrder(yval);
- // For each line y[j] (0 <= j < yLen), construct a polynomial, with
- // respect to variable x, fitting array fval[][j]
- final PolynomialFunction[] yPolyX = new PolynomialFunction[yLen];
- for (int j = 0; j < yLen; j++) {
- xFitter.clearObservations();
- for (int i = 0; i < xLen; i++) {
- xFitter.addObservedPoint(1, xval[i], fval[i][j]);
- }
- // Initial guess for the fit is zero for each coefficients (of which
- // there are "xDegree" + 1).
- yPolyX[j] = new PolynomialFunction(xFitter.fit(new double[xDegree + 1]));
- }
- // For every knot (xval[i], yval[j]) of the grid, calculate corrected
- // values fval_1
- final double[][] fval_1 = new double[xLen][yLen];
- for (int j = 0; j < yLen; j++) {
- final PolynomialFunction f = yPolyX[j];
- for (int i = 0; i < xLen; i++) {
- fval_1[i][j] = f.value(xval[i]);
- }
- }
- // For each line x[i] (0 <= i < xLen), construct a polynomial, with
- // respect to variable y, fitting array fval_1[i][]
- final PolynomialFunction[] xPolyY = new PolynomialFunction[xLen];
- for (int i = 0; i < xLen; i++) {
- yFitter.clearObservations();
- for (int j = 0; j < yLen; j++) {
- yFitter.addObservedPoint(1, yval[j], fval_1[i][j]);
- }
- // Initial guess for the fit is zero for each coefficients (of which
- // there are "yDegree" + 1).
- xPolyY[i] = new PolynomialFunction(yFitter.fit(new double[yDegree + 1]));
- }
- // For every knot (xval[i], yval[j]) of the grid, calculate corrected
- // values fval_2
- final double[][] fval_2 = new double[xLen][yLen];
- for (int i = 0; i < xLen; i++) {
- final PolynomialFunction f = xPolyY[i];
- for (int j = 0; j < yLen; j++) {
- fval_2[i][j] = f.value(yval[j]);
- }
- }
- return super.interpolate(xval, yval, fval_2);
- }
- }